Устройство системы питания и управления бактерицидного облучателя. Подключение бактерицидной лампы


Схемы включения бактерицидных ламп в сеть методические указания по применению бактерицидных ламп для обеззараживания воздуха и поверхностей в помещениях (утв- минздравмедпромом РФ от 28-02-95 11-1603-06) (2018). Актуально в 2018 году

размер шрифта

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ БАКТЕРИЦИДНЫХ ЛАМП ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОЗДУХА И ПОВЕРХНОСТЕЙ В ПОМЕЩЕНИЯХ (утв-... Актуально в 2018 году

На рис. П.1 <*> приведена наиболее распространенная одноламповая стартерная схема включения бактерицидной лампы Л с токоограничивающим электромагнитным элементом в виде дросселя L. В этой схеме стартер Ст, подключенный параллельно лампе, обеспечивает ее зажигание. Стартер представляет собой малогабаритную неоновую лампу тлеющего разряда с двумя электродами, один из которых выполнен из биметаллической ленты. Выпускаются стартеры, у которых оба электрода выполнены из биметаллической пластины.

<*> Рисунки не приводятся.

На рис. П.2 приведена одноламповая бесстартерная схема включения. В этой схеме для предварительного нагрева электродов лампы применен маломощный трансформатор с двумя вторичными накальными обмотками Тн. Напряжение сети, приложенное к электродам (при холодных электродах), является недостаточным для пробоя и зажигания лампы. Трансформатор Тн обеспечивает предварительный нагрев электродов, и после того, когда их температура достигнет необходимого значения, происходит зажигание лампы. При работающей лампе напряжение на первичной обмотке уменьшается и соответственно уменьшается нагрев электродов, что исключает их перегрев.

Встречаются ПРА, предназначенные для последовательного включения двух ламп (см. П.3 и П.4) с напряжением на каждой из них 50 - 60 В. Непременным условием использования двухламповых ПРА с последовательным включением ламп является соблюдение неравенства , а также соответствие рабочего тока лампы с номинальному току ПРА.

В качестве токоограничивающих элементов могут применяться управляемые полупроводниковые приборы - транзисторы и тиристоры, на базе которых созданы различные модификации электронных ПРА. Относительная сложность схем таких ПРА во многих случаях применения оправдывается их достоинствами: малая масса ПРА из-за существенного сокращения затрат обмоточной меди и электротехнической стали, небольшие потери мощности, повышение КПД излучения и снижение акустического шума.

Использование дросселя в виде токоограничивающего элемента приводит к снижению коэффициента мощности сети (cos фи о ), численно равному:

где:

Uл - напряжение на лампе;

Uс - напряжение сети.

Применение ПРА с низким значением cos фио вызывает почти двухкратное увеличение потребляемого тока из сети и, следовательно, рост потерь мощности в питающих линиях.

Увеличение значения cos фи достигается двумя путями: либо подключением компенсирующего конденсатора Ск параллельно сети для одноламповых схем, либо использованием двухламповой схемы, в которой в цепи одной лампы включен дроссель, а в другой последовательно с дросселем включен балластный конденсатор Сб, как это изображено на рис. П.5.

При одноламповых схемах включения компенсация коэффициента мощности может быть осуществлена для группы ламп. В этом случае емкость компенсирующего конденсатора Ск, необходимая для достижения cos фи к = 0,9, определяется из соотношения:

где:

N - число ламп;

Iл - ток лампы, А;

Uс - напряжение сети, В;

фи к - arccos 0,9 = 26°;

фи о = arccos , град.

Для подавления электромагнитных колебаний, создающих помехи радиоприему, применяются специальные конденсаторы Ср, включаемые параллельно лампе и сети (см. рис. П.1, П.2, П.3). Емкость таких конденсаторов примерно равна 0,05 мкф. Обычно они входят в комплект ПРА.

При работающей лампе ПРА является источником акустического шума. Основной причиной возникновения шума является вибрация металлических деталей (пластин магнитопровода, корпуса ПРА и деталей облучателя). Шумы излучаются в широком диапазоне частот от десятков Гц до десятков кГц, охватывающем область частот, воспринимаемых ухом человека. При некоторых обстоятельствах наличие постороннего шума в помещении может создать существенную помеху. Поэтому выпускаемые ПРА в зависимости от вида помещения разделяются на три класса: Н-3 - с нормальным уровнем шума - для промышленных зданий; Н-2 - с пониженным уровнем шума - для административно - служебных помещений; Н-1 - с особо низким уровнем шума - для бытовых, учебных и лечебных помещений.

Основные технические параметры ПРА приведены в таблице.

Таблица

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ПРА ДЛЯ РТУТНЫХ ЛАМП НИЗКОГО ДАВЛЕНИЯ

Тип ПРА Кол. и мощн. ламп, Вт Напряжение сети, В Сетевой ток, А Потери мощн. (справ. знач.), Вт Коэф. мощн. Габаритные размеры, мм Примечание
1УБМ-8/220-ВПП-800 1 x 8 220 0,145 7,2 0,55 150 x 39,5 x 36,5 Электромаг
2УБИ-8/220-ВПП-900 2 x 8 220 0,29 8,0 0,5 135 x 32,5 x 36,5 нитные
3УБК-8/220-АВПП-810 3 x 8 220 0,43 14,4 0,5 200 x 39,5 x 36,5
2УБИ(Е)-15/220-ВПП-800 2 x 15 220 0,66 8,7 0,5 150 x 39,5 x 36,5
1УБИ-30/220-ВПП-090 1 x 30 220 0,360 7,8 0,5 150 x 45 x 45
1УБИ(Е)-40/220-ВПП-0,75 1 x 40 220 0,430 9,6 0,5 125 x 46 x 43
2УБИ-20/220-ВПП-900 2 x 20 220 0,74 10 0,55 135 x 40 x 37
2УБИ-40/220-ВПП-900 1 x 40 220 0,43 10,4 0,55 150 x 39,5 x 36,5
1УБИ-65/220-230-910 1 x 65 220 0,67 13 0,55 150 x 50 x 42
УБЭ-20/220 1 x 20 220 0,1 3 0,99 366 x 50,5 x 35 Электронные
1УБЭ-40/220 1 x 20 220 0,18 4 0,99 366 x 50,5 x 35
2УБЭ-20/220 2 x 20 220 0,18 4 0,99 366 x 50,5 x 35
2УБЭ-40/220 2 x 40 220 0,36 8 0,99 366 x 50,5 x 35

Приложение 2

www.zakonprost.ru

Схема подключения дрт 400. Нюансы в использовании ртутно-кварцевых ламп

Особенности эксплуатации ртутно-кварцевых ламп

Обслуживание осветительных установок с ртутно-кварцевыми лампами имеет некоторые особенности, поэтому, в зависимости от типа ламп, нужно учи­тывать следующие требования.

Устройство ртутной лампы.

Лампы типа ДРЛ включаются в сеть с по­мощью ПРА. Так как промышленность выпускает двух- и четырехэлектродные лампы, то тип ПРА должен соответствовать типу лампы. Лампы мощностью 80, 125, 400 и 700 Вт выпускаются только четырехэлектродной конструкции, а лампы мощностью 250 и 1 000 Вт изготавливаются в двух модификациях. Поэтому это заме­чание в особенности относится к двум последним типам ламп.

Как исключение лампы четырехэлектродной кон­струкции могут включаться с ПРА для двухэлектродных ламп соответствующей мощности, но при этом из ПРА должен быть вынут разрядник. Если разрядник не будет изъят, то ПРА будет подавать на лампу высоковольт­ный поджигающий импульс, и лампа выйдет из строя.

Схема включения ртутно-кварцевой лампы ДРТ.

Внешняя температура окружающей среды оказывает сильное влияние на напряжение зажигания ламп. Если лампа эксплуатируется в закрытых помещениях, где температура не опускается ниже нуля, то для зажига­ния лампы достаточно на нее подать напряжение не менее 200 В. В этих условиях для четырехэлектродных ламп может быть использован обычный ПРА в виде дросселя. Но этот ПРА не обеспечит зажигание такой лампы в установках наружного освещения, где темпе­ратура воздуха может изменяться до 30° С и ниже, и на лампу требуется подать напряжение не менее 300 В.

В этом случае необходимо применять другой тип ПРА, например трансформатор с большим рассеянием. На это обстоятельство следует обратить внимание, так как наблюдаемое в зимнее время затруднение с зажиганием ламп может быть объяснено недостаточным напряже­нием холостого хода, создаваемого ПРА.

Лампы ДРЛ рассчитаны на эксплуатацию в верти­кальном положении, цоколем вверх. Однако при необхо­димости можно ее эксплуатировать в любом положении. Работа лампы в наклонном положении может оказать некоторое влияние на срок ее службы. При эксплуата­ции осветительных установок с лампами ДРЛ требуется следить за состоянием компенсирующей низкий коэф­фициент мощности установки.

В настоящее время при­нято устанавливать компенсирующие конденсаторы у групповых щитов или на подстанции. Такая система компенсации называется групповой. Возможна также компенсация низкого коэффициента мощности путем установки конденсатора у каждого светильника. В этом случае эта система называется индивидуальной. Если электрическая сеть рассчитана с учетом компенсирую­щей установки, то ее отключение может привести к воз­растанию тока почти вдвое, что ведет к перегрузке сети и трансформаторов. Отсутствие компенсирующей уста­новки требует увеличения сечения проводов сети и мощ­ности трансформаторов.

При эксплуатации двухэлектродных ламп ДРЛ очень распространенным недостатком ПРА является отсут­ствие поджигающего импульса, в результате чего лампы не зажигаются. Необходимо проверить надежность кон­тактирования токоведущих элементов разрядника и па­нели, на которой он установлен, и попробовать заменить старый разрядник на новый. Если при такой замене лампа начнет зажигаться, значит, вышел из строя раз­рядник. Следует иметь в виду, что срок службы разрядника значительно меньше срока службы лампы, поэтому их необходимо периодически заменять.

Если ПРА не встроен в светильник, а установлен отдельно от него, то при всех ремонтах и осмотрах обязательно проверяется надежность электрического контакта во всех соединениях и состояние заземления корпуса ПРА и светильника.

Принципиальная схема ртутной лампы.

Лампы типа ПРК нормальное рабочее положение лампы в приборе имеют горизонтальное. Допускается откло­нение от этого положения не более чем на 15°, так как при работе лампы в ином положении возможен перегрев катодов и сокращение продолжительности горения ламп.

Эксплуатировать лампы нужно с ПРА, поставляе­мыми комплектно с прибором, рассчитанным на включе­ние данного типа лампы. При отключении лампы ее пов­торное зажигание нельзя производить до полного охлаж­дения. Для этого требуется промежуток времени не более 10 мин.

При установке нового ПРА или замене вышедшего из строя следует убедиться в наличии в нем помехоподавляющего конденсатора, устанавливаемого парал­лельно лампе, так как в противном случае прибор мо­жет явиться источником радиопомех. Если такой кон­денсатор отсутствует, то параллельно лампе нужно включить конденсатор емкостью 0,05 мкф для ламп типа ПРК-4 и 0,005—0,007 мкф для всех остальных типов ламп.

При замене сгоревшей лампы на новую перед ее установкой в прибор рекомендуется протереть ее ватой, смоченной в спирте. В процессе работы лампы выделя­ется большое количество тепла, перегревающего ее. Поэтому, если лампа устанавливается в закрытый аппа­рат, не имеющий вентиляции, следует обязательно предусмотреть принудительную вентиляцию аппарата.

Лампы ПРК при горении интенсивно излучают в ультрафиолетовой области спектра и могут оказывать вредное действие на глаза людей. В связи с этим для предохранения глаз при пользовании такими лампами необходимо надевать защитные очки. Под действием ультрафиолетового излучения при неосторожном исполь­зовании лампы на коже могут появиться ожоги, поэтому применение этих ламп должно контролироваться меди­цинским персоналом, а при его отсутствии должны при­ниматься необходимые меры предосторожности.

Лампы типа ДРШ нормальное рабочее положение имеют вертикальное. Допускается неболь­шое отклонение от вертикали, но не более 10°. Для ламп, работающих на постоянном токе, анод, цоколь, имеющий большой диаметр со знаком « + », должен быть расположен внизу и подключен к положительному полюсу источника питания. В лампах переменного тока электрод поджига должен быть расположен сверху. Лампа в аппарате крепится за ножки или за цоколи токоведущих электродов.

Схема подключение мощной УФ лампы: Л — лампа ДРТ; ДБ — дроссель; К — кнопка; С1 —конденсатор ёмк.

Для обеспечения нормального зажигания ламп необходимо следить за величиной питающего напряже­ния сети, которая должна быть для ламп 127 В не ниже 115 В и для ламп 220 В не ниже 200—205 В. На процесс зажигания лампы оказывает влияние температура окру­жающего воздуха, которая должна быть не ниже 15° С.

При работе ламп не допускается их принудительное охлаждение, но когда лампы установлены в закрытой аппаратуре, то размеры аппаратуры и ее вентиляция должны быть рассчитаны

xn----7sbeb3bupph.xn--p1ai

Устройство системы питания и управления бактерицидного облучателя

Изобретение относится к области обеззараживания воздуха и загрязненных поверхностей в помещениях в отсутствие людей с использованием ультрафиолетового излучения. Устройство системы питания и управления бактерицидного облучателя открытого типа содержит блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, к которому подключена по крайней мере одна газоразрядная лампа бактерицидного облучателя, при этом блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы, выполненным со светодиодным цифровым индикатором. Между блоком сетевого включения и пускорегулирующим аппаратом блока питания и управления включены блок задержки включения и блок-задатчик времени работы газоразрядной лампы. Изобретение обеспечивает повышение надежности и безопасности работы бактерицидного облучателя открытого типа. 6 з.п. ф-лы, 1 ил.

 

Изобретение относится к средствам дезинфекции с использованием ультрафиолетового излучения, а именно к бактерицидным облучателям открытого типа, и направлено на повышение надежности и безопасности обеззараживания воздуха и загрязненных поверхностей преимущественно в медицинских помещениях в отсутствие людей.

Из уровня техники известно устройство системы питания и управления бактерицидного облучателя, содержащее блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, к которому подключены газоразрядные лампы бактерицидного облучателя (RU 2092191 C1, A61L 9/20, 1997; RU 11068 U1, A61L 9/20, 1999; RU 99710 U1, A61L 9/20, 2010; RU 104068 U1, A61L 9/20, 2011). Основным недостатком такого устройства является отсутствие средств автоматического включения, контроля время работы газоразрядных ртутных ламп и отключения бактерицидного облучателя от источника электропитания - электрической сети, что снижает надежность и безопасность работы устройства и эффективность проведения процесса бактерицидного обеззараживания с использованием ультрафиолетового излучения, особенно в помещениях при отсутствии людей.

Также известно устройство системы питания и управления бактерицидного облучателя, содержащее блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, к которому подключены газоразрядные лампы бактерицидного облучателя, при этом блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы (RU 91857 U1, A61L 9/20, 2010). Недостатком такого устройства является отсутствие средств автоматического включения и отключения бактерицидного облучателя от источника электропитания - электрической сети, что снижает надежность и безопасность работы устройства и эффективность проведения процессу бактерицидного обеззараживания с использованием ультрафиолетового излучения, особенно в помещениях при отсутствии людей. Кроме того, цветовой индикатор счетчика наработки газоразрядной лампы не позволяет фиксировать текущее значение времени наработки газоразрядной лампы.

Технический результат, на получение которого направлено изобретение, заключается в повышении надежности и безопасности работы бактерицидного облучателя и, соответственно, в повышении эффективности процесса бактерицидного обеззараживания с использованием ультрафиолетового излучения преимущественно в помещениях в отсутствие людей.

Решение поставленной задачи и достижение заявленного технического результата обеспечивается тем, что в устройстве системы питания и управления бактерицидного облучателя открытого типа для обеззараживания воздуха и загрязненных поверхностей в помещениях в отсутствие людей, содержащем блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, к которому подключена, по крайней мере, одна газоразрядная лампа бактерицидного облучателя, при этом блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы, согласно изобретению между блоком сетевого включения и пускорегулирующим аппаратом блока питания и управления включены блок задержки включения и блок-задатчик времени работы газоразрядной лампы, а счетчик наработки газоразрядной лампы выполнен со светодиодным цифровым индикатором.

При этом блок задержки включения выполнен в виде реле времени с задержкой включения, нормально разомкнутые контакты которого включены в электрическую цепь блока сетевого включения.

При этом блок-задатчик времени работы газоразрядной лампы выполнен в виде реле времени с задержкой отключения, нормально замкнутые контакты которого включены в электрическую цепь блока сетевого включения.

При этом датчик контроля работы газоразрядной лампы выполнен в виде реле тока.

Кроме того, устройство системы питания и управления бактерицидного облучателя снабжено блоком звукового оповещения (звуковой сигнализатор), подключенным к блоку задержки включения, и информационным блоком, содержащим световой индикатор, подключенный к блоку задержки включения, и световые индикаторы, подключенные к блоку-задатчику времени работы газоразрядной лампы и датчику контроля работы газоразрядной лампы.

Кроме того, информационный блок дополнительно содержит световой индикатор, подключенный к блоку сетевого включения.

Кроме того, устройство системы питания и управления бактерицидного облучателя дополнительно содержит датчик движения с нормально замкнутыми контактами, включенными в электрическую цепь блока сетевого включения, который блокирует подачу электропитания.

Наличие блока задержки включения бактерицидной газоразрядной лампы, который обеспечивает после подключения оператором устройства системы питания и управления бактерицидного облучателя к источнику электропитания (к электрической сети) автоматическую задержку подачи напряжения на пускорегулирующий аппарат, к которому подключены бактерицидные газоразрядные лампы, на определенное время, необходимое для покидания оператором обрабатываемого - обеззараживаемого помещения, а также наличие блока-задатчика времени работы бактерицидной газоразрядной лампы, который после отработки заданной выдержки времени обеспечивает отключение подачи напряжения на пускорегулирующий аппарат, к которому подключены бактерицидные газоразрядные лампы, позволяет надежно и безопасно без присутствия людей - оператора осуществлять эффективный автоматизированный процесс бактерицидного обеззараживания - дезинфекции помещения.

Кроме того, наличие датчика контроля работы газоразрядной лампы, выполненного в виде реле тока, который связан со световым индикатором, позволяет контролировать процесс работы устройства системы питания и управления бактерицидного облучателя и своевременно отключать его при наличии неисправности газоразрядной лампы. При этом наличие счетчика со светодиодным цифровым индикатором (табло) обеспечивает постоянный контроль и возможность фиксирования и снятие показаний текущего значения времени наработки газоразрядной лампы, что необходимо для занесения в рабочий журнал в условиях медицинского учреждения, и, соответственно, своевременную замену отработавшей свой заданный срок службы (эффективной работы) газоразрядной лампы.

При этом наличие датчика движения, включенного в электрическую цепь блока сетевого включения, который блокирует подачу электропитания заявленного устройства системы питания и управления бактерицидного облучателя при открывании двери и/или перемещении людей в обеззараживаемом помещении, что исключает случайное облучение людей - обслуживающего персонала ультрафиолетовым облучением и дополнительно повышает надежность и безопасность процесса бактерицидного обеззараживания и, соответственно, безопасность работы бактерицидного облучателя открытого типа в отсутствие людей.

На чертеже представлена блок-схема устройства системы питания и управления бактерицидного облучателя.

Устройство системы питания и управления бактерицидного облучателя содержит блок 1 сетевого включения и блок 2 питания и управления, выполненный в виде последовательно включенных программируемого блока 3 задержки включения, программируемого блока-задатчика 4 времени работы газоразрядной лампы и пускорегулирующего аппарата 5 (преимущественно электронного пускорегулирующего аппарата ЭПРА), к которому подключены одна или несколько бактерицидных газоразрядных ртутных ламп 6 низкого давления. Кроме того, устройство системы питания и управления бактерицидного облучателя дополнительно содержит датчик 7 движения с нормально замкнутыми контактами, включенными в электрическую цепь блока сетевого включения, который блокирует подачу электропитания.

Для контроля работы бактерицидного облучателя к блоку питания и управления подключены датчик 8 контроля работы газоразрядной лампы и счетчик 9 наработки газоразрядной лампы.

Кроме того, устройство системы питания и управления бактерицидного облучателя снабжено блоком 10 звукового оповещения (звуковым сигнализатором), подключенным к блоку 3 задержки включения, и информационным блоком 11, содержащим световой индикатор 12, подключенный к блоку 3 задержки включения, и световые индикаторы 13, 14 и 15, подключенные соответственно к блоку-задатчику 4 времени работы газоразрядной лампы, датчику 8 контроля работы газоразрядной лампы и к блоку 1 сетевого включения.

При этом блок 3 задержки включения может быть выполнен в виде реле времени с задержкой включения, например, 30÷60 секунд, нормально разомкнутые контакты которого включены в электрическую цепь блока 1 сетевого включения, а блок-задатчик 4 времени работы газоразрядной лампы может быть выполнен в виде реле времени с задержкой отключения, например, 3÷5 минут, нормально замкнутые контакты которого включены в электрическую цепь блока 1 сетевого включения. Блок 1 сетевого включения может быть выполнен на основе вилки-розетки, поворотного или кнопочного выключателя, автоматического выключателя, выключателя с дистанционным управлением или в виде выключателей других типов. Датчик 7 движения (перемещения) может быть выполнен в виде электронного инфракрасного датчика или, например, емкостного датчика, доплеровского ультразвукового датчика или микроволнового датчика.

При этом датчик 8 контроля работы газоразрядной лампы может быть выполнен в виде реле тока, включенного в цепь питания газоразрядных ламп 6, а счетчик 9 наработки газоразрядной лампы, суммирующий время работы газоразрядных ламп 6, выполнен со светодиодным цифровым индикатором (табло), что повышает надежность контроля и эффективность процесса обеззараживания и работы бактерицидного облучателя в целом.

Устройство системы питания и управления бактерицидного облучателя работает следующим образом.

Бактерицидный облучатель устанавливают в обеззараживаемое помещение и подключают устройство системы питания и управления к источнику электропитания (электрической сети). Затем оператор посредством блока 1 сетевого включения переводит - включает бактерицидный облучатель в рабочий режим, загорается световой индикатор 15 («сеть»), подается напряжение на блок 3 задержки включения газоразрядной лампы, включается блок 10 звукового оповещения (звуковая сигнализация) («ультрафиолетовое излучение») и загорается световой индикатор 12. При этом через заданный временной интервал, например 30÷60 секунд, в течение которого оператор покидает помещение, блок 3 задержки включения газоразрядной лампы автоматически производит подачу напряжения (при нормально замкнутых контактах блока-задатчика 4 времени работы газоразрядной лампы) на пускорегулирующий аппарат 5 (преимущественно электронный пускорегулирующий аппарат - ЭПРА), который осуществляет пуск и поддержание рабочего режима бактерицидных газоразрядных ртутных ламп 6 низкого давления, обеспечивающих процесс бактерицидного обеззараживания - дезинфекции помещения, гаснет световой индикатор 12 («ультрафиолетовое излучение») и выключается блок 10 звукового оповещения (звуковая сигнализация). После отработки заданной выдержки времени блок-задатчик 4 времени работы газоразрядной лампы размыкает электрическую цепь, соединяющую блок 1 сетевого включения и блок 2 питания и управления, включается световой индикатор 13 («дезинфекция проведена»). Если в процессе работы одна из ламп выйдет из рабочего режима, то ток, поступающий на лампы, будет ниже рабочего и сработает реле тока датчика 8 контроля работы газоразрядной лампы и загорится световой индикатор 14 («неисправность»).

При случайном открывании двери и/или несанкционированном проникновении персонала в обеззараживаемое помещение электронный инфракрасный датчик 7 движения реагирует на тепловое излучение движущегося человека и вырабатывает управляющий сигнал на размыкание нормально замкнутых контактов, включенных в электрическую цепь блока 1 сетевого включения, и автоматически отключает бактерицидный облучатель от источника электропитания (электрической сети).

В процесс работы устройства системы питания и управления бактерицидного облучателя в память счетчика 9 наработки газоразрядной лампы вносится текущее значение времени работы газоразрядных ламп 6 и суммируется с ранее запомненным временем, что отображается на табло светодиодного цифрового индикатора и обеспечивает постоянный надежный контроль и возможность фиксирования и снятие показаний текущего значения времени наработки газоразрядных ламп, что необходимо для занесения в рабочий журнал в условиях медицинского учреждения, и, соответственно, своевременную замену отработавшей свой заданный срок службы (эффективной работы) газоразрядной лампы.

Таким образом, заявленное устройство системы питания и управления бактерицидного облучателя автоматически обеспечивает эффективность, надежность и безопасность протекания процесса бактерицидного обеззараживания - дезинфекции помещения без присутствия в нем оператора.

1. Устройство системы питания и управления бактерицидного облучателя открытого типа для обеззараживания воздуха и загрязненных поверхностей в помещениях в отсутствие людей, содержащее блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, к которому подключена по крайней мере одна газоразрядная лампа бактерицидного облучателя, при этом блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы, отличающееся тем, что между блоком сетевого включения и пускорегулирующим аппаратом блока питания и управления включены блок задержки включения и блок-задатчик времени работы газоразрядной лампы, а счетчик наработки газоразрядной лампы выполнен со светодиодным цифровым индикатором.

2. Устройство системы питания и управления бактерицидного облучателя по п. 1, отличающееся тем, что блок задержки включения выполнен в виде реле времени с задержкой включения, нормально разомкнутые контакты которого включены в электрическую цепь блока сетевого включения.

3. Устройство системы питания и управления бактерицидного облучателя по п. 1, отличающееся тем, что блок-задатчик времени работы газоразрядной лампы выполнен в виде реле времени с задержкой отключения, нормально замкнутые контакты которого включены в электрическую цепь блока сетевого включения.

4. Устройство системы питания и управления бактерицидного облучателя по п. 1, отличающееся тем, что снабжено блоком звукового оповещения, подключенным к блоку задержки включения, и информационным блоком, содержащим световой индикатор, подключенный к блоку задержки включения, и световые индикаторы, подключенные соответственно к блоку-задатчику времени работы газоразрядной лампы и датчику контроля работы газоразрядной лампы.

5. Устройство системы питания и управления бактерицидного облучателя по п. 4, отличающееся тем, что информационный блок дополнительно содержит световой индикатор, подключенный к блоку сетевого включения.

6. Устройство системы питания и управления бактерицидного облучателя по п. 1, отличающееся тем, что дополнительно содержит датчик движения с нормально замкнутыми контактами, включенными в электрическую цепь блока сетевого включения, который блокирует подачу электропитания.

7. Устройство системы питания и управления бактерицидного облучателя по п. 1 или 4, отличающееся тем, что датчик контроля работы газоразрядной лампы выполнен в виде реле тока.

www.findpatent.ru

СХЕМЫ ВКЛЮЧЕНИЯ БАКТЕРИЦИДНЫХ ЛАМП В СЕТЬ "МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ БАКТЕРИЦИДНЫХ ЛАМП ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОЗДУХА И ПОВЕРХНОСТЕЙ В ПОМЕЩЕНИЯХ" (утв. Минздравмедпромом РФ от 28.02.95 N 11-16/03-06)

действует Редакция от 28.02.1995 Подробная информация
Наименование документ"МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ БАКТЕРИЦИДНЫХ ЛАМП ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОЗДУХА И ПОВЕРХНОСТЕЙ В ПОМЕЩЕНИЯХ" (утв. Минздравмедпромом РФ от 28.02.95 N 11-16/03-06)
Вид документаметодические указания, перечень
Принявший органминздравмедпром рф
Номер документа11-16/03-06
Дата принятия01.01.1970
Дата редакции28.02.1995
Дата регистрации в Минюсте01.01.1970
Статусдействует
Публикация
  • На момент включения в базу документ опубликован не был
НавигаторПримечания

СХЕМЫ ВКЛЮЧЕНИЯ БАКТЕРИЦИДНЫХ ЛАМП В СЕТЬ

На рис. П.1 <*> приведена наиболее распространенная одноламповая стартерная схема включения бактерицидной лампы Л с токоограничивающим электромагнитным элементом в виде дросселя L. В этой схеме стартер Ст, подключенный параллельно лампе, обеспечивает ее зажигание. Стартер представляет собой малогабаритную неоновую лампу тлеющего разряда с двумя электродами, один из которых выполнен из биметаллической ленты. Выпускаются стартеры, у которых оба электрода выполнены из биметаллической пластины.

<*> Рисунки не приводятся.

На рис. П.2 приведена одноламповая бесстартерная схема включения. В этой схеме для предварительного нагрева электродов лампы применен маломощный трансформатор с двумя вторичными накальными обмотками Тн. Напряжение сети, приложенное к электродам (при холодных электродах), является недостаточным для пробоя и зажигания лампы. Трансформатор Тн обеспечивает предварительный нагрев электродов, и после того, когда их температура достигнет необходимого значения, происходит зажигание лампы. При работающей лампе напряжение на первичной обмотке уменьшается и соответственно уменьшается нагрев электродов, что исключает их перегрев.

Встречаются ПРА, предназначенные для последовательного включения двух ламп (см. П.3 и П.4) с напряжением на каждой из них 50 - 60 В. Непременным условием использования двухламповых ПРА с последовательным включением ламп является соблюдение неравенства , а также соответствие рабочего тока лампы с номинальному току ПРА.

В качестве токоограничивающих элементов могут применяться управляемые полупроводниковые приборы - транзисторы и тиристоры, на базе которых созданы различные модификации электронных ПРА. Относительная сложность схем таких ПРА во многих случаях применения оправдывается их достоинствами: малая масса ПРА из-за существенного сокращения затрат обмоточной меди и электротехнической стали, небольшие потери мощности, повышение КПД излучения и снижение акустического шума.

Использование дросселя в виде токоограничивающего элемента приводит к снижению коэффициента мощности сети (cos фи о ), численно равному:

где:

Uл - напряжение на лампе;

Uс - напряжение сети.

Применение ПРА с низким значением cos фио вызывает почти двухкратное увеличение потребляемого тока из сети и, следовательно, рост потерь мощности в питающих линиях.

Увеличение значения cos фи достигается двумя путями: либо подключением компенсирующего конденсатора Ск параллельно сети для одноламповых схем, либо использованием двухламповой схемы, в которой в цепи одной лампы включен дроссель, а в другой последовательно с дросселем включен балластный конденсатор Сб, как это изображено на рис. П.5.

При одноламповых схемах включения компенсация коэффициента мощности может быть осуществлена для группы ламп. В этом случае емкость компенсирующего конденсатора Ск, необходимая для достижения cos фи к = 0,9, определяется из соотношения:

где:

N - число ламп;

Iл - ток лампы, А;

Uс - напряжение сети, В;

фи к - arccos 0,9 = 26°;

фи о = arccos , град.

Для подавления электромагнитных колебаний, создающих помехи радиоприему, применяются специальные конденсаторы Ср, включаемые параллельно лампе и сети (см. рис. П.1, П.2, П.3). Емкость таких конденсаторов примерно равна 0,05 мкф. Обычно они входят в комплект ПРА.

При работающей лампе ПРА является источником акустического шума. Основной причиной возникновения шума является вибрация металлических деталей (пластин магнитопровода, корпуса ПРА и деталей облучателя). Шумы излучаются в широком диапазоне частот от десятков Гц до десятков кГц, охватывающем область частот, воспринимаемых ухом человека. При некоторых обстоятельствах наличие постороннего шума в помещении может создать существенную помеху. Поэтому выпускаемые ПРА в зависимости от вида помещения разделяются на три класса: Н-3 - с нормальным уровнем шума - для промышленных зданий; Н-2 - с пониженным уровнем шума - для административно - служебных помещений; Н-1 - с особо низким уровнем шума - для бытовых, учебных и лечебных помещений.

Основные технические параметры ПРА приведены в таблице.

Таблица

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ПРА ДЛЯ РТУТНЫХ ЛАМП НИЗКОГО ДАВЛЕНИЯ

Тип ПРА Кол. и мощн. ламп, Вт Напряжение сети, В Сетевой ток, А Потери мощн. (справ. знач.), Вт Коэф. мощн. Габаритные размеры, мм Примечание
1УБМ-8/220-ВПП-800 1 x 8 220 0,145 7,2 0,55 150 x 39,5 x 36,5 Электромаг
2УБИ-8/220-ВПП-900 2 x 8 220 0,29 8,0 0,5 135 x 32,5 x 36,5 нитные
3УБК-8/220-АВПП-810 3 x 8 220 0,43 14,4 0,5 200 x 39,5 x 36,5
2УБИ(Е)-15/220-ВПП-800 2 x 15 220 0,66 8,7 0,5 150 x 39,5 x 36,5
1УБИ-30/220-ВПП-090 1 x 30 220 0,360 7,8 0,5 150 x 45 x 45
1УБИ(Е)-40/220-ВПП-0,75 1 x 40 220 0,430 9,6 0,5 125 x 46 x 43
2УБИ-20/220-ВПП-900 2 x 20 220 0,74 10 0,55 135 x 40 x 37
2УБИ-40/220-ВПП-900 1 x 40 220 0,43 10,4 0,55 150 x 39,5 x 36,5
1УБИ-65/220-230-910 1 x 65 220 0,67 13 0,55 150 x 50 x 42
УБЭ-20/220 1 x 20 220 0,1 3 0,99 366 x 50,5 x 35 Электронные
1УБЭ-40/220 1 x 20 220 0,18 4 0,99 366 x 50,5 x 35
2УБЭ-20/220 2 x 20 220 0,18 4 0,99 366 x 50,5 x 35
2УБЭ-40/220 2 x 40 220 0,36 8 0,99 366 x 50,5 x 35

Приложение 2

zakonbase.ru