Драйверы для светодиодов характеристики


Мощные светодиоды: схемы драйверов :: SYL.ru

Для регулировки напряжения у мощных светодиодов используются специальные драйвера. По конструкции они довольно сильно отличаются. Основным элементом драйвера принято считать регулятор. Устанавливается он на микросхеме, которая крепится к модулятору. Для передачи сигнала между компонентами используются резисторы, а также транзисторы. В свою очередь, компараторы отвечают за стабильность работы системы. В некоторых случаях применяются выпрямители, однако в данной ситуации многое зависит от мощности светодиодов.

Светодиодные драйвера безконденсаторного типа

Драйвер для мощных светодиодов данного типа подходит для моделей с мощностью не более 20 В. Регуляторы в этом случае используются двоичные. В свою очередь модуляторы устанавливаются различных типов. Конденсаторы в драйверах заменяют специальные усилители. Как правило, они применяются двухразрядного типа, однако исключения также бывают. Резисторы используются как открытые, так и закрытые. Однако первый вариант встречается чаще. Непосредственно соединяются мощные светодиоды с драйвером через резисторный выход.

Ортогональные модели

Данного типа светодиоды мощные (схемы показаны ниже) на сегодняшний день являются очень востребованными. Основным элементом таких устройств принято считать компаратор. Максимум входное напряжение он может выдерживать до 20 В. При этом нагрузку на него можно давать до 30 А. Частотность устройства зависит от мощности конденсаторов.

Если рассматривать лучевые модификации, то у них вышеуказанный параметр в среднем находится в районе 33 Гц. Катушки индуктивности у драйверов имеются как понижающие, так и повышающие. Входное напряжение они должны выдерживать не менее 30 В. Непосредственно подключение устройства происходит через интегральный выход. Питание мощных светодиодов в этом случае может осуществляться через батарейки.

Схема устройства с импульсным резистором

Модели с импульсными резисторами (схемы драйверов для мощных светодиодов показаны ниже) в наше время встречаются довольно редко. Параметр порогового напряжения у них в среднем находится на уровне 30 В. При этом блоки питания можно использовать различной мощности. Также в данном случае необходимо учитывать частотность устройства. В среднем данный параметр не превышает 40 Гц.

Транзисторы для драйверов подбираются исключительно открытого типа. Скорость передачи сигнала зависит во многом от конденсаторов. Выпрямители производители часто используют полевые. Пропускная способность у них обычно колеблется в районе 3 мк. Дополнительно следует учитывать чувствительность таких устройств. Регуляторы используются самые разнообразные. За счет указанного драйвера можно сделать мощный фонарик на светодиодах.

Модель с расширителем

Модификации с расширителями на сегодняшний день являются наиболее востребованными. Транзисторы в данном случае встречаются только лучкового типа. При этом модуляторы используются многими обычные. В свою очередь конденсаторы обязаны пороговое напряжение выдерживать на уровне 20 В. Частота устройства обычно находится в районе 33 Гц. В некоторых случаях расширители устанавливаются с затворами. Однако следует учитывать, что стоят такие модели довольно дорого. В данном случае наиболее распространенными принято считать модификации без него.

Схема устройств на трансивере

Драйвера на трансиверах используются для светодиодов, мощность которых превышает 25 В. При этом модуляторы чаще всего можно встретить именно интегрированного типа. В среднем частота их колеблется в районе 35 Гц. В свою очередь пороговое напряжение они выдерживают около 30 В. Фильтры в данном случае также устанавливаются. Если скачки в сети довольно большие, то они способны сильно помочь. В противном случае фильтры будут лишними в устройстве. Подключается сверхяркий мощный светодиод к драйверу через интегральный выход.

Применение раздельных контактов

Контакты данного типа устанавливаются непосредственно на модуляторах. Используются эти компоненты в высокочастотных и низкочастотных моделях. Регуляторы для них подходят только поворотного типа. Скорость передачи сигнала у таких модификаций довольно хорошая. Если рассматривать безконденсаторные драйвера, то всего контактов там предусмотрено три.

В среднем входное напряжение они выдерживают на уровне 30 В. При этом отрицательное сопротивление в цепи может доходить до 20 Ом. Частотность зависит от мощности резисторов, а также типа выпрямителя. Работают контакты непосредственно через дроссель. При этом параметр пороговой частоты меняется за счет изменения предельной проводимости.

Использование низкочастотных тиристоров

Драйвера с низкочастотными тиристорами на сегодняшний день являются довольно востребованными. Компараторы для них подходят с емкостью не менее 10 пФ. Также следует отметить, что безконденсаторные устройства устанавливаться не могут. В данном случае мощность резисторов как минимум обязана составлять 20 В. При этом мощные светодиоды подключаются непосредственно через интегральный выход. Блоки питания чаше всего используются емкостного типа. В некоторых случаях можно встретить модели на маломощных батарейках. Однако на большую производительность в такой ситуации рассчитывать не приходится.

Применение высокочастотных тиристоров

Высокочастотные тиристоры в наше время встречаются редко. Связано это с тем, что выходное напряжение они выдерживают 35 В. Таким образом, на компаратор оказывается довольно большая нагрузка. Регуляторы в данном случае устанавливаются цифровые. Соединяются они с модуляторами через регистр. Транзисторы в устройствах данного типа можно встретить в основном полевые. В среднем они выходное напряжение выдерживают около 20 В.

Однако многое в данном случае зависит от производителя. Непосредственно скорость передачи сигнала тесно связана с типом конденсаторов. Также следует учитывать, что тиристоры способны повышать отрицательное сопротивление. В результате на выпрямитель может оказываться большая нагрузка.

Полупроводниковые модели

Драйвера данного типа предназначены для обслуживания трех и более светодиодов. Блоки питания у них устанавливаются с мощностью на уровне 40 В. При этом частотность устройства можно менять при помощи регулятора. В данном случае выпрямители используются довольно редко. Также полупроводниковые модели позволяют использовать мощные светодиоды на 5 В. Подключение осуществляется через ортогональные выходы.

Переключатели в данном случае используются самые разнообразные. При этом частотность транзисторов зависит от скорости передачи сигнала. Конденсаторы в таких моделях встречаются в основном открытого типа. При этом тиристоры используются довольно редко. Регуляторы подсоединяются к модуляторам чаще всего напрямую. Однако в некоторых модификациях это происходит через сменный проводник. Таким образом, по характеристикам модели могут сильно отличаться.

Модели с двухсторонними регуляторами

Модели данного типа славятся большой чувствительностью. При этом конденсаторы у них используются только закрытого типа. В данном случае проводимость устройства зависит от скорости передачи сигнала. Резисторы можно встретить как полевого, так и симметричного типа. Параметр проводимости в среднем колеблется в районе 3 мк. При этом частотность способна меняться в зависимости от положения регулятора.

Для того чтобы подсоединить мощные светодиоды к драйверу, применяется ортогональный выход. При этом стабилитроны устанавливаются только на пару с демпферами. Также следует учитывать, что данные регуляторы способны довольно долго прослужить. Контакты у них обычно установлены медного типа. В свою очередь переходники используются высокой плотности.

Устройства с меридиональными регуляторами

Модели данного типа отличаются пониженной чувствительностью. В данном случае компараторы могут использоваться только лучевого типа. При этом модуляторы встречаются самые разнообразные. Однако наиболее распространенными на сегодняшний день принято считать двоичные модификации.

Отличаются невысокой точностью. Резисторы применяются как открытого, так и закрытого типа. При этом емкость конденсаторов колеблется от 2 до 3 пФ. Устанавливается регулятор чаще всего через переходник. Скорость передачи сигнала в данном случае менять можно. При этом системы контактов используются самые разнообразные.

www.syl.ru

Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно? Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод. А теперь перейдём к делу. Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии). Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1). Эту формулу я писАл много раз. Повторюсь. Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели. Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2). (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать. Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено. Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях. Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно. Конденсаторы заказывал эти:aliexpress.com/snapshot/310648391.html aliexpress.com/snapshot/310648393.html Диоды вот эти:aliexpress.com/snapshot/6008595825.html Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения. У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г). Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%. В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо. Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно. Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора. Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую). Посмотрим на характеристики от продавца:[input voltage] ac85-265v" that everyday household appliances." [output voltage] load after 10-15v; can drive 3-4 3w led lamp beads series [output current] 600maА вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)]. Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех). Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит. Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее! На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно. Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).

Микросхема 3106 отслеживает выходные параметры преобразователя через обратную связь с вспомогательной обмотки трансформатора и управляет ключевым транзистором. Попытки найти информацию на эту МС в Интернете ничего не дала. RS1 RS2 — токозадающие резисторы. От их номинала зависит выходной ток драйвера. RS1 (1 Ом) – основной, при помощи RS2 (33 Ом) выходной ток подгоняется более точно. Оказывается, и у этих драйверов можно регулировать выходной ток. Снял зависимость выходного тока от сопротивления RS (может кому пригодится). Регулировать ток при помощи выносного переменного резистора не получится. Паразитные ёмкости и индуктивности никто не отменял. А теперь на счёт применимости. В этот светильник что только не вклеивал (был обзор). Теперь приклеил 1-Вт-ные светодиоды. К ним буду подключать обозреваемые драйверы, так нагляднее. А вот так он светит. Всего 12 светодиодов (6 пар). Для равномерного распределения света самое оптимальное количество. Для эксперимента тоже лучше не придумаешь. Один из вариантов подключения к драйверу с балластом на конденсаторах. С1=1,5мкФ+1,2мкФ=2,7мкФ. Чтобы посчитать мощность, необходимо посчитать ток по формуле (2). I=(228В-36В)*2,7мкФ/3,18=163мА. Мощность считается по формуле из школьного учебника физики. Р= 36В*0,163А=5,9Вт. А теперь посмотрим, что показывают приборы.

Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает. А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно. У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть. А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу. Итого 3 параллели по 4 светодиода. Вот, что показывает Ваттметр. 7,1Вт активной мощности. Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр. Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер. Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил. Теперь выделю плюсы и минусы этих схем:Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами. -Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой. -Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели. -Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами. +Схема очень проста, не требует особых навыков при изготовлении. +Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон. +Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста. +Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.). +Можно регулировать ток через светодиоды подбором ёмкости балласта. +Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения. Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение. Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша. Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь. На этом всё! Удачи всем.

mysku.ru

СВЕТОДИОДНЫЕ ДРАЙВЕРЫ NATIONAL SEMICONDUCTOR

7 апреля

С каждым годом расширяется сфера применения мощных светодиодов высокой яркости. Их преимущество обеспечивается за счет большей световой эффективности, высокой надежности, экономичности. Достижение всех этих параметров неразрывно связано с применением микросхем драйверов, которые обеспечивают стабилизированный ток питания цепей светодиодов. В настоящее время многие фирмы производят широкий спектр микросхем линейных и импульсных драйверов для различных приложений мощных светодиодов. National Semiconductor является одним из лидеров среди производителей светодиодных драйверов. Разработанная фирмой серия драйверов понижающего типа (step down) LM3402/LM3404/LM3405 обеспечивает достижение высоких показателей эффективности применения светодиодов c мощностью от 1 до 5 Вт в широком диапазоне входных питающих напряжений.

Широкому применению светодиодов препятствует высокая цена. Несмотря на расширение производства мощных сверхъярких светодиодов, их цена продолжает оставаться достаточно высокой. Цена светодиодного светильника определяется и стоимостью драйвера светодиода, которая может быть соизмерима со стоимостью светодиодного источника. Драйвер светодиода должен обеспечивать заданный постоянный ток при изменении входного напряжения источника питания. Стабильный ток требуется для обеспечения постоянной яркости свечения. Вторая причина — превышение номинальной величины тока, протекающего через светодиод, негативно сказывается на сроке службы.Спектр монохромных светодиодов, как и спектр белых светодиодов зависит от величины проходящего через него тока. При уменьшении или увеличении тока происходит смещение цветовой температуры белого светодиода, а также смещение доминантной частоты монохромного светодиода.

 

При входных напряжениях источника питания больших, чем прямое напряжение на светодиоде или сумме прямых напряжений цепочки светодиодов, используются регуляторы тока понижающего типа. В настоящее время существует несколько методов формирования сигналов управления ключевыми элементами в понижающих регуляторах (см. рис. 1): управление по току или напряжению, гистерезису и так называемый метод Constant-on-Time (CoT) контроля, каждый из которых обладает своими особенностями.

 

Рис. 1. Принципы управления CоT и по току

 

Токовый режим управления обеспечивает простую реализацию обратной связи и позволяет защитить ключевой транзистор от экстремальных режимов работы. При реализации метода CоT в качестве импульсного генератора используется цепочка из двух последовательных таймеров (одновибраторов). Первый таймер определяет время нахождения транзисторного силового ключа в открытом состоянии (Ton), а временной интервал второго таймера — длительность фазы транзистора в закрытом состоянии. Длительность фазы открытого состояния для CоT является фиксированной и определяется величиной внешнего резистора. Длительность фазы закрытого состояния меняется в зависимости от сигнала обратной связи. Частота следования импульсов для CоT зависит от задаваемого тока и от величины входного напряжения.Для метода управления по току используется встроенный высокочастотный генератор фиксированной частоты, который задает период смены фаз регулирующего силового ключа (открыт/ закрыт). Частота при регулировании остается неизменной, меняется только скважность импульсов, т.е. соотношение времен открыт/закрыт.

 

Драйверы семейства относятся к регуляторам напряжения понижающего типа. Их особенности — широкий диапазон входных напряжений. Для драйверов LM3402 и LM3404 существуют более высоковольтные модификации — LM3402HV и LM3404HV (High Voltage) выдерживающие максимальное входное напряжение до 75 В. Драйверы могут использоваться для управления сверхъ­яркими светодиодами с мощностью от 1 до 5 Вт. В таблице 1 представлены основные характеристики светодиодных драйверов.

 

Таблица 1. Основные характеристики светодиодных драйверов LM3402/LM3404/LM3405

Параметры

LM3402/02HV

LM3404/04HV

LM3405/05А

Рабочий выходной ток, А

0,5

1,20

1

Предельный ток (ном.), А

0,7

1,5

2,0

Входное напряжение, В

6...42 (02)6...75 (02HV)

6...42 (04)6...75 (04HV)

3...15 (05)3...22 (05А)

Встроенный мощный MOSFET-ключ

+

Частота преобразования

Регулируемая в диапазонеот 10 кГц до 1 МГц

Регулируемая в диапазонеот 10 кГц до 2 МГц

Фиксированная 1,6 MГц

Метод управления стабилизацией тока

CоT

По току с внутренней схемой коррекции цепи обратной связи

Опорный источник напряжения, В

0,205

Корпус

MSOP-8 (MUA08A) или PSOP-8 (MRA08B)

SO-8PSOP-8

SOT23-6

Защита от короткого замыкания и обрыва в выходной цепи

+

Защита от перегрева

+

Защита от низкого входного напряжения (ULVO)

+

Ограничение тока выходного ключа в каждом цикле импульсного преобразователя

+

Плавный запуск

+

Управление яркостью (dimming)

+

Режим shutdown

+

Рабочий диапазон температур, °C

–40...125

 

Наличие расширенного диапазона входных напряжений для светодиодных драйверов актуально при создании светодиодных систем освещения для транспортных средств. Источники света в транспортных средствах могут питаться от генератора или от бортовой аккумуляторной сети (см.табл. 2).

 

Таблица 2. Напряжения бортовых аккумуляторных сетей транспортных средств

Бортовые сети транспортных средств

Напряжение, В

Самолетная сеть

27

Корабельная сеть

24

Автомобили легковые, грузовые, спецтехника

12/24

Трамвайная сеть освещения

24

Аккумуляторная сеть в поездах

24

Бортовая сеть освещения в скоростных поездах Evrostar

72

 

В бортовых сетях часто случаются броски напряжения при коммутации нагрузки. Например, в автомобильной сети 12-В импульсы перенапряжения могут достигать 70 В. Автомобильные электронные схемы, питаемые от аккумуляторной батареи 12 В, должны быть рассчитаны на более высокое напряжение 40 В и выше, чтобы противостоять напряжениям, возникающим, например, при коммутации индуктивной нагрузки. Повышенное напряжение в аккумуляторной сети возникает и в процессе подзарядки от генератора.Модификации светодиодных драйверов LM3402HV и LM3404HV полностью соответствуют требованиям, предъявляемым к автомобильному электронному оборудованию как по части защиты от перенапряжений в цепи питания, так и по части обеспечения расширенного рабочего температурного режима –40…125°C.

 

Драйвер LM3402 (см. рис. 2) является компактным, импульсным регулятором постоянного тока понижающего типа с эффективностью до 95% при выходном токе через светодиод 525 мA.

 

Рис. 2. Структурная схема драйвера LM3402

 

Микросхема имеет вход для управления яркостью (ШИМ-управление). Опорное напряжение в цепи обратной связи уменьшено до 0,2 В. Диапазон входных напряжений LM3402 от 6 до 42 В. Более высоковольтная модификация LM3402HV имеет диапазон входных напряжений от 6 до 75 В.Резистивный датчик тока включен последовательно в цепи светодиода. Выходной транзистор открывается, когда напряжение на резистивном токовом датчике ниже 0,2 В. Второй компаратор имеет порог 0,3 В и предназначен для отключения выходного каскада при обрыве цепи светодиода (светодиодов). В структуре драйвера есть и датчик для мониторинга максимального тока, протекающего через ключевой транзистор. Компаратор с порогом 0,735 А обеспечивает защиту от сверхтоков при коротком замыкании. В структуре микросхемы есть также модуль термозащиты с блокировкой рабочего режима.Рабочая частота лежит в диапазоне от 10 кГц до 1 МГц и выбирается исходя из нескольких факторов. Она зависит от входного напряжения, топологии светодиодной нагрузки, а также от выбора КПД. Лучший КПД обеспечивается при низких частотах переключения, однако при более высоких частотах можно уменьшить размеры дросселя. Но при высоких частотах переключения повышается уровень ЭМИ. Особенностью импульсных преобразователей LM340x является необязательность установки на выходе конденсатора, который обычно присутствует в таких схемах. Его установка, однако, может помочь снизить величину индуктивности дросселя. Схема включения драйвера показана на рисунке 3.

 

Рис. 3. Уменьшение напряжение обратной связи до 208 мВ дает снижение потребления на резистивном датчике Rsns до 0,5 А × 0,2 В = 0,1 Вт

 

Установка тока через светодиод задается величиной резистора в цепи обратной связи R1.

 

IF = VFB/R1.

 

Встроенный источник опорного напряжения, используемый для работы схемы мониторинга выходного тока, имеет номинал всего 0,208 В, что дало возможность уменьшить сопротивление резистора датчика тока до 0,01…0,2 Ом, уменьшить мощность рассеивания на нем и увеличить КПД всей схемы управления. Например, для тока 1 А можно использовать датчик тока с номиналом 0,2 Ом. Рассеиваемая мощность на резисторе датчика тока составит всего 208 мВт. Поэтому в качестве датчика тока можно использовать резисторы в корпусе 0805 мощностью рассеивания 250 мВт.

 

Драйверы LM3404 и LM3404HV схожи с LM3402/3402HV. Схемы их включения также аналогичны. Отличие заключается только в использовании более мощного встроенного MOSFET-ключа, обеспечивающего рабочие токи через светодиод до 1,2 А. Драйвер предназначен для управления светодиодами мощностью 3 и 5 Вт с рабочими токами 0,7…1 A. Драйвер LM3404 может с успехом использоваться и для питания последовательной цепочки мощных светодиодов. На рисунке 4 показана схема управления последовательной гирляндой, состоящей из 10 мощных светодиодов, от источника 48 В.

 

Рис. 4. Управление гирляндой из 10 последовательных светодиодов

 

Прямое падение напряжения на цепочке светодиодов — около 35 В. Расчетные параметры схемы: частота переключения транзистора 223 кГц, индуктивность дросселя 330 мкГн, КПД токового регулятора 96%.

 

LM 3405 (см. рис. 5) отличается от драйверов LM3402/LM3404.

 

Рис. 5. Структурная схема светодиодного драйвера LM3405

 

Во-первых, не используется метод CоT, а вместо него используется токовый метод управления с внутренней компенсацией сигнала токового датчика. Во-вторых, в нем используется фиксированная высокая частота 1,6 МГц. Работа на фиксированной высокой частоте дает возможность использовать дроссель с малой индуктивностью, который имеет меньшие размеры и меньшую стоимость. В итоге, обеспечивается минимальная стоимость и минимальные размеры схемы управления.В-третьих, значительно уменьшен диапазон входных напряжений до 3…15 В. Корпус TSOT-6 — самый миниатюрный из тройки драйверов. Для драйвера LM3405A диапазон немного расширен: от 3 до 22 В и используется другой корпус SOT23-6. Сектор применения данного типа драйвера уже другой: светодиодные фонари, лампы-вспышки, индустриальные источники освещения как альтернатива галогеновым 12-В лампам, питаемым от понижаемого трансформатора 220/12 В. Драйвер, в частности, может быть использован в светодиодных лампах с цоколем EL16.Ток потребления внутренней схемы управления драйвера составляет всего 1,8 мА. При токе 1 А на корпусе схемы рассеивается около 445 мВт. КПД преобразователя для одного светодиода 85% (напряжение 6 В), для двух светодиодов — 90% при входном напряжении 10 В, для трех светодиодов — 92% при входном напряжении 14 В. При повышении напряжения КПД уменьшается. Стабильная работа преобразователя обеспечивается при значениях тока через светодиод больших 200 мА, поэтому резистор R1 должен быть не более 1 Ом. Если требуется обеспечить ток через светодиод меньший 200 мА, то необходимо использовать управление яркостью через ШИМ-модуляцию. Диапазон управляющих сигналов ШИМ от 100 Гц до 5 кГц. Однако при частотах более 5 кГц сигнал ШИМ оказывает влияние на рабочий цикл схемы.

 

Рис. 6. Схема управления светодиодной лампой формата MR16 (VIN = 12 В AC, IF = 0,75 A)

 

На рисунке 6 показан пример реализации схемы управления светодиодной лампы с цоколем MR16.

 

Светодиодные светильники обеспечивают ряд функций, которые не могут быть реализованы для светильников с лампами накаливания. В первую очередь это возможность управления яркостью или диммирование (dimming) с сохранением спектра излучения во всем диапазоне регулировки яркости. В обычных лампах при уменьшении напряжения уменьшается не только яркость, но и меняется спектр, он смещается в сторону красного. В светодиодах яркость и спектр зависят от величины тока. Особенно это актуально для мощных светодиодов белого свечения, в которых используются люминофорные слои. Для сохранения баланса белого требуется обеспечивать импульсную стабилизацию значения тока. Для монохромных будет происходить смещение доминантной длины волны излучения, а для белых светодиодов — нарушение баланса белого и изменение цветовой температуры излучения.На рисунке 7 показано смещение спектра белого светодиода мощностью 1 Вт при различных способах управления яркостью.

 

Рис. 7. Слева светодиод запитан постоянным током 50 мА (более желтый спектр)

 

Слева — спектр светодиода при протекании постоянного тока 50 мА, справа — при питании светодиода импульсным током 300 мА со скважностью 1/6, частота ШИМ 500 Гц. Средний ток в обоих случаях одинаковый, а вот результат — разный. Спектр в данном варианте смещен в сторону голубого.Управление яркостью — обеспечивается сигналом ШИМ, имеющим более низкочастотный диапазон по отношению к частоте переключения ключевого элемента. В итоге, сигнал ШИМ накладывается поверх импульсного регулирования тока. Низкая частота ШИМ не нарушает работу схемы регулирования тока. При цифровой ШИМ-регулировке яркости интегрирование происходит в зрительной системе человека. При этом обеспечивается поддержание импульсов постоянного тока для всего диапазона яркостей. Изменяется только скважность. Сила тока задается внешним резистором.

 

КПД драйвера зависит от многих факторов: частоты переключения, величины входного напряжения, разницы между входным напряжением и напряжением падения на цепочке светодиодов. Чем ближе напряжение на входе к напряжению на светодиодах, тем выше КПД.Максимальная мощность, рассеиваемая на корпусе драйвера, — 448 мВт (при выходном токе 1 А).Поскольку потери на драйвере и внешних элементах определяются только величиной тока и не зависят от числа включенных последовательно светодиодов, то КПД системы зависит от числа включенных светодиодов в последовательную цепочку (см. рис. 8).

 

Рис. 8. Эффективность драйвера в зависимости от входного напряжения и схемы включения светодиодов

 

Чем больше светодиодов, тем больше КПД. Расчет показывает, что при использовании последовательной схемы включения из 6 светодиодов КПД может достигать 91, 87% для схемы последовательно-параллельной ( 2 цепочки по 3 светодиода) и всего 83% для схемы, состоящей из 3 цепочек по 2 светодиода. Наименьший КПД (82%) получается при управлении одним светодиодом.Для помощи разработчику доступна on-line-программа My Webench [10], которая позволяет оптимизировать выбор светодиодного драйвера под конкретный тип светодиода в зависимости от условий применения, а также рассчитать рабочие режимы и параметры схемы управления, подобрать номиналы и типы навесных компонентов (дросселей, конденсаторов, резисторов, диодов Шоттки).

 

Светодиодные драйверы понижающего типа для мощных и сверхъярких светодиодов в настоящее время выпускают десятки производителей: Maxim, Analog Device, Texas Instruments, Allegro, Micrel, Zetex, Linear Technologies, Monolithic Power Systems и многие другие. Все серии драйверов, предназначенных для управления светодиодами с мощностью от 1 до 5 Вт, имеют практически одинаковый набор параметров в своих категориях мощности : у всех есть защита от перегрева и токовых перегрузок, работа в широком диапазоне температур, регулировка яркости. Однако по диапазону входных напряжений выбор драйверов не так велик. Одним из конкурентов National Semiconductor в этом секторе является фирма Maxim. В частности, Maxim производит токовые драйверы понижающего типа, работающие в широком диапазоне входных напряжений. Светодиодный драйвер MAX16831 работает в диапазоне входных напряжений 5,4…76 В и обеспечивает выходной ток 1,4/2 А. Однако для работы этого драйвера требуются два внешних мощных MOSFET. В остальном драйвер имеет такие же, как и у драйверов серии LM340x, функции защиты от короткого замыкания, обрыва, перегрева, управление яркостью. В опорном источнике используется уровень напряжения даже меньше, чем у LM340x — всего 107 мВ. В другом понижающем стабилизаторе MAX16803, рассчитанном на ток 350 мА, используется низковольтный (204 мВ) опорный источник.

 

1. LM3402/LM3402HV 0.5A Constant Current Buck Regulator for Driving High Power LEDs Datasheet.2. LM3404/04HV 1.0A Constant Current Buck Regulator for Driving High Power LEDs. Datasheet.3. LM3405A 1.6MHz, 1A Constant Current Buck LED Driver with Internal Compensation in Tiny SOT23 Package, Datasheet.4. LM3405 1.6MHz, 1A Constant Current Buck Regulator for Powering LEDs. Datasheet.5. Никитин А. Применение импульсных по­вы­ша­ющих преобразователей фирмы Na­tio­nal Semiconductor для управления светоди­о­дами//Компоненты и технологии, 2007, №8.6. Полищук А. Полупро­вод­ни­ковое освещение — уже реальность//Компо­нен­ты и технологии, 2007, №8.7. Richardson C. LED Applications and Driving Techniques//National Semiconductor.8. Koskela T. Color-Management LED Drivers Have a Bright Future//Applications Engineer National Semiconductor.9. Давиденко Ю. Микросхемы электропитания светодиодов//Современная электроника, 2004, №12.10. www.national.com/appinfo/webench/led/pled.html.

Вы можете скачать эту статью в формате pdf здесь.

www.russianelectronics.ru

Простой LED драйвер для 3w светодиода на PT4115

Микросхема PT4115 от компании PowTech продолжает зарабатывать положительные отзывы среди российских радиолюбителей. Малоизвестному китайскому производителю удалось вместить в компактном корпусе несколько блоков управления с мощным транзистором на выходе. Микросхема разработана для стабилизации тока и питания им светодиодов мощностью более 1 Вт. Драйвер на основе PT4115 имеет минимальную обвязку и высокий КПД. Убедиться в этом и узнать о тонкостях подбора элементов принципиальной схемы поможет данная статья.

Краткое описание микросхемы PT4115

Согласно официальной документации, LED драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

  • диапазон рабочего входного напряжения: 6–30В;
  • регулируемый выходной ток до 1,2А;
  • погрешность стабилизации выходного тока 5%;
  • имеется защита от обрыва нагрузки;
  • имеется вывод для регулировки яркости и включения/выключения при помощи DC или ШИМ;
  • частота переключения до 1 МГЦ;
  • КПД до 97%;
  • обладает эффективным корпусом, с точки зрения рассеивания мощности.

Назначение выводов PT4115:

  1. SW. Вывод выходного переключателя (МОП-транзистора), который подключен непосредственно к его стоку.
  2. GND. Общий вывод сигнальной и питающей части схемы.
  3. DIM. Вход для задания диммирования.
  4. CSN. Вход с датчика тока.
  5. VIN. Вывод напряжения питания.

Микросхема PT4115 имеет отдельный вывод для управления включением и выключением светодиодов, а также возможностью регулировки яркости с помощью изменения уровня напряжения или ШИМ на выводе DIM.

Принципиальная схема драйвера

На рисунке представлены две принципиальные схемы драйвера для 3w светодиода на основе PT4115. Первая схема питается источником постоянного тока напряжением от 6 до 30 вольт. Вторую схему дополняет диодный мост, питается она источником переменного тока с напряжением 12-18В.

На выходе диодного моста рекомендуется дополнительно установить конденсатор емкостью 1000 мкФ. Он сгладит колебания выпрямленного напряжения.

Важным элементом обоих схем является конденсатор CIN. Он непросто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия ключа (МОП-транзистора). Без CIN индуктивная энергия через диод Шоттки D поступит на вывод VIN и спровоцирует пробой микросхемы по питанию. Поэтому включение драйвера без входного конденсатора категорически запрещено.

Индуктивность L подбирается исходя из количества светодиодов и тока в нагрузке.

Согласно документации, в схеме драйвера для 3 ватного светодиода рекомендуется использовать индуктивность на 68-220 мкГн.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением номинала индуктивности в большую сторону. При этом снижается эффективность всей схемы, но схема остается работоспособной. На малых токах индуктивность должна быть больше, чтобы компенсировать пульсации, возникающие из-за задержки при переключении транзистора.

Резистор RS выполняет функцию датчика тока. В первый момент времени, при подаче входного напряжения ток через RS и L равен нулю. Затем внутрисхемный CS comparator сравнивает потенциалы до и после резистора RS и на его выходе появляется высокий уровень. Ток в нагрузке, ввиду наличия индуктивности, начинает плавно нарастать до величины, определяемой RS. Скорость увеличения тока зависит не только от величины индуктивности, но и от размера напряжения питания.

Работа драйвера основана на переключении компаратора внутри микросхемы, который постоянно сравнивает уровни напряжения на выводах IN и CSN. Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора RS с максимальным отклонением от номинала 1%.

Для включения светодиода на постоянную яркость вывод DIM остаётся не задействован, а ток на выходе определяется исключительно номиналом RS. Управление диммированием (яркостью) можно осуществляться одним из двух вариантов.Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0,5 до 2,5В. При этом ток будет меняться пропорционально уровню потенциала на выводе DIM. Дальнейший рост напряжения, до 5В, не влияет на яркость и соответствует 100% току в нагрузке. Снижение потенциала ниже 0,3В приводит к отключению всей схемы. Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц.

Конструкция и детали сборки

Выбор элементов, расположенных в обвязке микросхемы PT4115, следует производить на основании рекомендаций изготовителя. В качестве CIN рекомендуется использовать конденсатор с низким ESR (эквивалентным последовательным сопротивлением). Данный параметр является вредным и негативно влияет на КПД. При питании от стабилизированного источника достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ, который должен быть размещен в непосредственной близости от микросхемы. При питании от источника переменного тока компания PowTech указывает на необходимость монтажа танталового конденсатора ёмкостью более 100 мкФ.

Типовая схема включения PT4115 для 3w светодиода подразумевает установку катушки индуктивности на 68 мкГн, располагать ее следует максимально близко к выводу SW PT4115.

Катушку индуктивности можно сделать своими руками, используя кольцо из старого компьютера и провод ПЭЛ-0,35.

К диоду D выдвигаются особые требования: малое прямое падение напряжения, малое время восстановления во время переключения и стабильность параметров при росте температуры p-n перехода, чтобы не допустить увеличения тока утечки. Этим условиям отвечает диод Шоттки FR103, способный выдерживать импульсы тока до 30А при температуре до 150°C.

Наконец, самый прецизионный элемент схемы драйвера для 3w светодиода – резистор RS. Минимальное значение RS=0,082 Ом, что соответствует току 1,2 А. Его рассчитывают, исходя из необходимого тока питания светодиода, по формуле:

RS=0,1/ILED, где ILED – номинальное значение тока светодиода, А.

В схеме включения PT4115 для 3w светодиода значение Rs составляет 0,13 Ом, что соответствует току 780 мА. В магазинах не всегда можно найти резистор такого номинала. Поэтому придется вспомнить формулы расчета суммарного сопротивления при последовательном и параллельном включении резисторов:

  • Rпосл=R1+R2+…+Rn;
  • Rпар=(R1xR2)/(R1+R2).

Таким образом, можно с высокой точностью получить нужное сопротивление из нескольких низкоомных резисторов.

В заключение хочется ещё раз подчеркнуть важность стабилизации тока, а не напряжения для обеспечения нормальной длительной работы мощных светодиодов. Известны случаи, когда в светодиодах китайского происхождения ток плавно продолжает нарастать в течение некоторого времени после включения и останавливается на значении, превышающем паспортный номинал. Это приводит к перегреву кристалла и постепенному снижению яркости. Драйвер для 3w светодиода на микросхеме PT4115 – это гарантия стабильной светоотдачи в сочетании с высоким КПД при условии эффективного отвода тепла от кристалла.

Читайте так же

ledjournal.info

Драйвер для светодиода своими руками на микросхеме MAX756

Эта статья поможет всем желающим самостоятельно  изготовить своими руками драйвер для светодиода на микросхеме MAX756 и, попутно, понять некоторые особенности питания светодиодов.

Особенность светодиода в роли нагрузки состоит в том, что он, не как лампа накаливания. У него нелинейная вольт-амперная характеристика питания. Поэтому нерационально питать его напрямую от батареи напряжением 4,5В, поскольку одна треть энергии будет истрачена напрасно, расходуясь на гасящем резисторе.

Чтобы светодиод обеспечить питанием от одной или двух батареек, необходим драйвер, который повышает выходное напряжение до нужной величины и поддерживающий его на стабильном уровне при неизбежной разрядке батареи.

Достаточно простой драйвер для светодиода можно собрать по следующей схеме:

За основу взята микросхема МАХ756 фирмы "Maxim", она специально создана для переносных радиоэлектронных приборов с независимым питанием. Драйвер продолжает работать даже  при уменьшении питающего напряжения до 0,7 В. По необходимости выходное напряжение драйвера можно установить равным 3,3В или 5 В при токе нагрузки 300мА или 200 мА соответственно. Коэффициент полезного действия при максимальной нагрузке составляет более 87 %.

Принцип работы драйвера светодиода

Цикл работы драйвера на микросхеме MAX756 можно поделить на два этапа, а именно:

Первый этап

Внутренний транзистор в данный момент открыт и через дроссель L1 протекает линейно-нарастающий ток. В электромагнитном поле дросселя накапливается энергия. Конденсатор C3 постепенно разряжается, отдавая ток светодиодам. Продолжительность фазы составляет примерно 5 мкс. Но эта фаза может быть прекращена досрочно. Это произойдет в том случае, если максимально допустимое значение ток стока транзистора превысит 1 А.

Второй этап

Транзистор на этом этапе закрыт. Протекающий ток от дросселя L1 через диод VD1  заряжает конденсатор C3, возмещая его разрядку на первом этапе. При увеличении напряжения на конденсаторе до определенного уровня данный этап заканчивается.

С постепенным понижением входного напряжения и увеличением тока нагрузки, микросхема MAX756 переключается в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в данном случае не стабилизировано, оно уменьшается, оставаясь по возможности максимальным. От того какое фактическое напряжение элементов питания и тока потребления светодиодами, частота повторения данного цикла меняется в очень широких пределах.

В   роли светоизлучателей в драйвере применены четыре светодиода L-53PWC "Kingbright". Так как при токе 15 мА прямое падение на светодиодах составляет около 3,1В, излишние 0,2В приходится  гасить, включенным последовательно  резистором R1 . По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

На заметку: используя стабилизатор напряжения LM2941 можно сделать диммер для светодиодной лампы.

 Детали драйвера

Электролитические  конденсаторы С1 и C3 - импортные танталовы. У них малое сопротивление которое положительно влияет на КПД устройства. Конденсатор С2 - К10-176 или любой подходящий керамический (маркировка). Диод Шотки 1N5817  возможно поменять на SM5817. Дроссель L1 можно изготовить своими руками. Он намотан проводом ПЭВ-2 0,28 на сердечник от сетевого фильтра и содержит около 35 витков.

Сердечник представляет собой  кольцо размером К10x4x5 из   магнитной проницаемостью 60. Так же можно применить дроссели индуктивностью около 40 - 100 мкГн и допустимым током более 1А. Неплохо было бы, чтобы активное сопротивление   дросселя было меньше 0,1 Ом, в противном случае КПД устройства значительно снизится.

Потенциала данного драйвера на MAX756 для светодиода был проверен с применением регулируемого источника питания от 0 до 3В. Ниже представлена измеренная зависимость выходного напряжения от входного.

Преобразователь продолжал функционировать даже при уменьшении напряжения батареи до 0,4В, выдавая на выходе  2,6 В при токе 8 мА (вместо исходных 105 мА). Свечение светодиодов было достаточно заметным. Однако после  повторного включения драйвера он начинал работать только при натяжении питания более 0,7В. Замеренный КПД при новых элементах питания составил около 87 %.

www.joyta.ru

Драйвер для светодиодов своими руками

Светодиодный светильник своими руками

Изготовить светодиодный светильник своими руками несложно - достаточно свободного вечера, кое-каких компонентов и желания. Самый оптимальный вариант для начинающего светодиодника - переделка имеющегося светильника. Возможно, у вас в доме есть бра, торшер или другой источник света на базе лампы накаливания - из них вполне возможно изготовить светодиодный светильник, радующий глаз и экономящий электроэнергию .

Вариаций на тему модернизации может быть множество. Рассмотрим наиболее оптимальные.

Светодиоды

Для начала стоит определиться с тем, какие светодиоды лучше использовать. Если выбирать между мощными и маломощными - первые лучше с точки зрения трудоемкости. Чтобы заменить один мощный 1 Вт светодиод, понадобится 15-20 маломощных 5 мм или smd светодиодов. Соответственно, пайки с маломощными гораздо больше. Остановимся на мощных. Обычно они делятся на два вида - выводные и поверхностного монтажа. Для облегчения жизни лучше использовать выводные. Мощность светодиода лучше выбирать не более 1 Вт.

Драйвер

Чтобы светодиоды жили долго и счастливо, им нужен хороший источник питания (драйвер тока). Драйверы бывают в корпусе и без корпуса, с гальванической развязкой и без таковой. Если мы говорим о переделке светильника, то лучше выбрать вариант без корпуса и с гальванической развязкой.

Вариант без корпуса хорош по двум причинам. Первая - он меньше размером, чем такой же в корпусе. Вторая - он себя комфортней чувствует, так как меньше нагревается. Минус - сложнее крепить.

Гальваническая развязка, если не вдаваться в тонкости, нужна для безопасности. Если драйвер с гальванической развязкой - вас не стукнет током при прикосновении к выводу работающего светодиода. Если без развязки - стукнет. Стало быть, выберем драйвер без корпуса и с гальванической развязкой.

Самые распространенные типы светодиодов - 1 и 3 Вт. Для них существуют драйвера с током 300-350 мА (для 1 Вт светодиодов) и 600-700 мА (для 3 Вт светодиодов). Обычно для драйвера указано минимальное и максимальное количество светодиодов, которых к нему можно подключить, например 5-7х1 Вт . Если этого нет - нужно смотреть на выходное напряжение драйвера. Один белый светодиод имеет напряжение питания около 3,3 вольта. Значит, если у драйвера указано выходное напряжение 10 вольт - он потянет три светодиода, включенных последовательно.

Драйвер может быть с фильтром электромагнитных помех или без него. Если фильтра нет - возможно, драйвер будет давать помехи на телевизор и радиоприемник. Если драйвер маломощный (до 10 Вт) - вряд ли. Если мощный - наверняка.

Радиатор

Для успешных долгих лет светодиода радиатор не менее важен, чем драйвер. Ему нужно быть алюминиевым. Алюминия вокруг полно - от карнизов до сковородок. Все это - источник радиаторов. На каждый одноваттный светодиод нужно кусок алюминия 50х50 мм, тощиной около 1 мм. Кусок может быть меньше, если его изогнуть. Если вы возьмете кусок 25х25 мм и толщиной 5 мм - нужного эффекта не получите. Чтобы рассеивать тепло, нужна площадь, а не толщина. Обратите внимание - компьютерные кулеры рассчитаны на работу с вентилятором. Без него они отводят тепло от светодиодов очень плохо.

Готовим светодиодный модуль

В качестве практического задания изготовим простой светодиодный светильник. Нам понадобятся. три светодиода 1 Вт. драйвер 3х1 Вт. двухсторонний теплопроводящий скотч. радиатор (например, кусок П-образного профиля толщиной 1 мм и длиной 6-8 см).

Теплопроводящий скотч, как следует из его названия, может проводить тепло. Поэтому обычный двустороннй скотч из магазина хозтоваров не подойдет. Отрезаем полоску скотча шириной 6-7 мм.

Протираем радиатор ваткой. смоченной спиртом, то есть обезжириваем. Водка тоже подойдет. Донышки светодиодов также нужно обезжирить. Ацетон для этого использовать нежелательно - пластиковая линза светодиода может помутнеть.

Наклеиваем скотч на радиатор. Затем размечаем радиатор, чтобы установить светодиоды ровно.

Устанавливаем светодиоды на скотч. При этом соблюдаем полярность - все светодиоды должны быть развернуты одинаково так, чтобы плюс одного светодиода смотрел на минус соседнего. Слегка прижимаем их для лучшего контакта. После этого наносим олово на выводы светодиодов для облегчения дальнейшей пайки. Если у вас есть опасение, что скотч при этом может прогореть - просто приподнимите выводы светодиодов так, чтобы они не касались скотча. Корпус светодиода при этом нужно придерживать пальцем, чтобы от скотча не оторвался. Впрочем, можно отогнуть выводы заранее.

Соединяем светодиоды между собой. Для этого вполне достаточно жилки от любого многожильного провода.

Припаиваем драйвер. Если провода недостаточно длинные, их можно удлинить любым проводом, который есть под рукой, даже телефонным.

Проверяем полученное светодиодное изделие

Лучше оставить его на пару часов включенным. После этого желательно потрогать обратную сторону радиатора - прямо напротив светодиодов. Если палец терпит - все в порядке.

Самодельный светодиодный светильник готов. Время изготовления - 5 минут с перекурами :). Теперь вы можете вставить его в любой подходящий корпус. Разумеется, можно сделать и более мощный светильник, только диодов нужно побольше и драйвер помощнее, а принцип останется тем же. Подобная методика подойдет как для изготовления одиночного светильника, так и для мелкосерийного производства. К примеру, можно сэкономить значительные средства, установив подобный источник света в имеющиеся подъездные светильники или светильники на производстве силами местного электрика.

Если у вас есть вопросы по подключению светодиодов к драйверу, желательно почитать статью Драйвер или блок питания .

Юрий Рубан, г.

Драйвер для светодиода своими руками на микросхеме MAX756

Эта статья поможет всем желающим самостоятельно  изготовить своими руками драйвер для светодиода на микросхеме MAX756 и, попутно, понять некоторые особенности питания светодиодов.

Особенность светодиода в роли нагрузки состоит в том, что он, не как лампа накаливания. У него нелинейная вольт-амперная характеристика питания. Поэтому нерационально питать его напрямую от батареи напряжением 4,5В, поскольку одна треть энергии будет истрачена напрасно, расходуясь на гасящем резисторе.

Чтобы светодиод обеспечить питанием от одной или двух батареек, необходим драйвер, который повышает выходное напряжение до нужной величины и поддерживающий его на стабильном уровне при неизбежной разрядке батареи.

Достаточно простой драйвер для светодиода можно собрать по следующей схеме:

За основу взята микросхема МАХ756 фирмы #171 Maxim#187 , она специально создана для переносных радиоэлектронных приборов с независимым питанием. Драйвер продолжает работать даже  при уменьшении питающего напряжения до 0,7 В. По необходимости выходное напряжение драйвера можно установить равным 3,3В или 5 В при токе нагрузки 300мА или 200 мА соответственно. Коэффициент полезного действия при максимальной нагрузке составляет более 87 %.

Принцип работы драйвера светодиода

Цикл работы драйвера на микросхеме MAX756 можно поделить на два этапа, а именно:

Первый этап

Внутренний транзистор в данный момент открыт и через дроссель L1 протекает линейно-нарастающий ток. В электромагнитном поле дросселя накапливается энергия. Конденсатор C3 постепенно разряжается, отдавая ток светодиодам. Продолжительность фазы составляет примерно 5 мкс. Но эта фаза может быть прекращена досрочно. Это произойдет в том случае, если максимально допустимое значение ток стока транзистора превысит 1 А.

Второй этап

Транзистор на этом этапе закрыт. Протекающий ток от дросселя L1 через диод VD1  заряжает конденсатор C3, возмещая его разрядку на первом этапе. При увеличении напряжения на конденсаторе до определенного уровня данный этап заканчивается.

С постепенным понижением входного напряжения и увеличением тока нагрузки, микросхема MAX756 переключается в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в данном случае не стабилизировано, оно уменьшается, оставаясь по возможности максимальным. От того какое фактическое напряжение элементов питания и тока потребления светодиодами, частота повторения данного цикла меняется в очень широких пределах.

В   роли светоизлучателей в драйвере применены четыре светодиода L-53PWC #171 Kingbright#187 . Так как при токе 15 мА прямое падение на светодиодах составляет около 3,1В, излишние 0,2В приходится  гасить, включенным последовательно  резистором R1. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

На заметку: используя стабилизатор напряжения LM2941 можно сделать диммер для светодиодной лампы .

 Детали драйвера

Электролитические  конденсаторы С1 и C3 #8212 импортные танталовы. У них малое сопротивление которое положительно влияет на КПД устройства. Конденсатор С2 #8212 К10-176 или любой подходящий керамический. Диод Шотки 1N5817  возможно поменять на SM5817. Дроссель L1 можно изготовить своими руками. Он намотан проводом ПЭВ-2 0,28 на сердечник от сетевого фильтра и содержит около 35 витков. Сердечник представляет собой  кольцо размером К10x4x5 из   магнитной проницаемостью 60. Так же можно применить дроссели индуктивностью около 40 #8212 100 мкГн и допустимым током более 1А. Неплохо было бы, чтобы активное сопротивление   дросселя было меньше 0,1 Ом, в противном случае КПД устройства значительно снизится.

Потенциала данного драйвера на MAX756 для светодиода был проверен с применением регулируемого источника питания от 0 до 3В. Ниже представлена измеренная зависимость выходного напряжения от входного.

Преобразователь продолжал функционировать даже при уменьшении напряжения батареи до 0,4В, выдавая на выходе  2,6 В при токе 8 мА (вместо исходных 105 мА). Свечение светодиодов было достаточно заметным. Однако после  повторного включения драйвера он начинал работать только при натяжении питания более 0,7В. Замеренный КПД при новых элементах питания составил около 87 %.

LED драйвер схема

На первой схеме представлен простой, мощный и дешевый светодиодный драйвер, который способен собрать даже начинающий радиолюбитель. Эта схема led драйвера идеально сочетается с мощными и сверхяркими светодиодами, и может быть применена для любого их колличества, с любым видом питания.

В нашей разработке, мы взяли LED элемент мощностью 1 ватт, но можно изменить радиокомпоненты Led драйвера и использовать светодиоды и большей мощности.

Параметры схемы драйвера:

    входное напряжение: 2В до 18В выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе) ток: 20 ампер

В качестве источника питания я применил готовый трансформаторный блок питания на 5 Вольт, т.к для питания одного светодиода его вполне хватит. Радиатор на мощный транзистор не нужен, т.к ток около 200 мА. Поэтому резистор R3 будет около 2 кОм (I=0,5/R3). Он является установочным и закрывает транзистор Q2, если течет повышенный ток

Транзистор FQP50N06L в соответствии с паспортными данными работает только до 18 Вольт, если требуется больше вам следует воспользоваться справочником по транзисторам .

Т.к данная схема очень проста собрал ее без печатной платы с помощью навесного монтажа. Следует также сказать о назначении транзисторов в этой конструкции. FQP50N06L применен в качестве переменного резистора, а 2N5088BU в роли токового датчика. Он также задает обратную связь, которая следит за параметрами тока и держит его в заданных пределах.

Простой драйвер для питания светодиодов в автомобиле

Эта простая схемка отлично зарекомендовала себя в индикации на приборной панели авто, благодоря своей простоте и надежности.

Эту схему можно использовать для запитки светодиодов как в автомобиле и не только в нем. Данная схема ограничивает ток и обеспечивает нормальную работу светодиода. Этот драйвер может запитать светодиоды мощностью 0,2-5 ватт от 9-25 Вольт благодоря применению микросхемы стабилизатора напряжения LM317.

Сопротивление резистора можно определить по следующей формуле R = 1.25/I, где I — ток светодиода в Амперах. Если вы хлтите применить мощные светодиоды, микросхему LM317 обязательно установите на теплоотвод.

Для стабильной работы схемы Led драйвера на LM317, входное напряжение должно немного превышать напряжение питания светодиода примерно на 2 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт. При необходимости схему можно подключить к самодельному блоку питания .

За основу схемы взята микросхема МАХ756, она проектировалась для переносных устройств с независимым питанием. Драйвер продолжает работать даже при понижении питающего напряжения до 0,7 В. Если возникнет необходимость выходное напряжение драйвера можно задать от3 до 5 вольт при токе нагрузки до 300мА. КПД при максимальной нагрузке более 87 %.

Работы драйвера на микросхеме MAX756 можно условно поделить на два цикла, а именно:

Первый: Внутренний транзистор микросхеме в данный момент открыт и через дроссель течет линейно-нарастающий ток. В электромагнитном поле дросселя копится энергия. Конденсатор C3 потихоньку разряжается и отдает ток светодиодам. Продолжительность цикла около 5 мкс. Но этот цикл может быть завершен досрочно, в том случае, если максимально допустимый ток стока транзистора возрастет более 1 А.

Второй: Транзистор в этом цикле заперт. Ток от дросселя через диод заряжает конденсатор C3, взамен того, что он потерял в первом цикле. С увеличением напряжения на конденсаторе до некоторого уровня данный этап цикла финиширует.

Микросхема MAX756 переходит в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в этом случае не стабилизировано, оно снижается, но остается по возможности максимально возможным.

К схеме подключены четыре светодиода типа L-53PWC Kingbright . Так как при токе 15 мА прямое падение на светодиодах будет 3,1 вольта, лишние 0,2 вольта погасит резистор R1. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

Дроссель можно взять самодельный, намотав проводом ПЭВ-2 0,28 на сердечник (кольцо размером К10x4x5 из магнитной проницаемостью 60) от сетевого фильтра 35 витков. Так же можно взять и готовые дроссели с индуктивностью от 40 до 100 мкГн и рассчитанные на ток более 1А

Источники:

sferatd.ru

СВЕТОДИОДНЫЕ ДРАЙВЕРЫ

     Обзор источников тока для мощных светодиодов. Благодаря применению широтно-импульсной модуляции обладают высоким КПД, надежностью. Светодиодные драйверы отличаются минимальным нагревом элементов схемы, высокой стабильностью выходных параметров, качественной элементной базой. Применяются для изготовления светодиодных ламп и мощных фонарей LED. Имеют защиту от переполюсовки на входе. Такой драйвер пригоден для конструирования осветительных приборов с питанием от бортовой сети автомобиля.

Светодиодный драйвер 3x1 Вт, 300-330 мА

Выполнен на базе микросхемы SD42509

Входное напряжение (Input voltage) : AC 8-16 V, DC 8-24 V

КПД (Efficiency) : 85-90 %

Коэффициент мощности (Power Factor) : 0,8-0,9

Выходной ток (Output current) : 300-320 mA (~5%)

Пиковый ток (Instantaneous current) : 350 mA (500 nS)

Рабочая температура (Operating temperature) : -40 +85 C

Относительная влажность окружающей среды (Ambient humidity) : 20-95 % RH

Размеры (Size) : 13,5 x 13 x 8 mm

Цена 3уе.

led драйвер на базе AMC 7135

LED драйвер для мощных светодиодов, четыре чипа AMC 7135, защита от переполюсовки. Входное напряжение - 3,6 - 4,5 В. Выходной ток 1400 мА. Диаметр 16 мм, высота 2 мм. Цена 3уе.

Светодиодный драйвер 3х2 Вт, 420-450 мА

Входное напряжение (Input voltage) : AC 8-16 V, DC 8-24 V

КПД (Efficiency) : 85-90 %

Коэффициент мощности (Power Factor) : 0,8-0,9

Выходной ток (Output current) : 420-450 mA (~5%)

Пиковый ток (Instantaneous current) : 470 mA (500 nS)

Рабочая температура (Operating temperature) : -40 +85 C

Относительная влажность окружающей среды (Ambient humidity) : 20-95 % RH

Размеры (Size) : 13,5 x 13 x 8 mm

Вес (Weight) : 4,5 G

Цена 4уе.

Светодиодный драйвер 220 В, 3х1 Вт, 290-300 мА

Входное напряжение (Input voltage) : AC 90-250 VКПД (Efficiency) : 83 %Выходное напряжение (Output voltage) : 6-12 ВВыходной ток (Output current) : 290-300 mA (~5%)Пиковый ток (Instantaneous current) : 330 mA (500 nS)Коэффициент мощности (Power Factor) : 0,65-0,7Рабочая температура (Operating temperature) : -30 +65 CОтносительная влажность окружающей среды (Ambient humidity) : 20-95 % RHРазмеры (Size) : 23 x 16 x 16 mm

Светодиодный драйвер 1x2 Вт, 400-430 мА

Входное напряжение (Input voltage) : AC 8-16 V, DC 8-24 V

КПД (Efficiency) : 85-90 %

Коэффициент мощности (Power Factor) : 0,8-0,9

Выходной ток (Output current) : 400-430 mA (~5%)

Выходное напряжение (Output voltage) : 3-3,5 V

Пиковый ток (Instantaneous current) : 450 mA (500 nS)

Рабочая температура (Operating temperature) : -40 +85 C

Относительная влажность окружающей среды (Ambient humidity) : 20-95 % RH

Размеры (Size) : 11 x 13 x 10 mm

led драйвер для питания мощного светодиода. 3,6-4,8 В, 1000 мА

ШИМ led драйвер для питания мощного светодиода. Оптимален для питания светодиода от 4 аккумуляторов 1,2 В.

Пять режимов.

Диаметр 17 мм, высота 3,3 мм.

Входное напряжение 3,6-4,8 В.

Выходное напряжение - 3,2-3,9 В.

Выходной ток: Hi: 1000 мА. Middle : 350 mA. Low : 50 mA. Strobe : 350 mA. SOS 500 mA.

Светодиодный драйвер 220 В, 1х3 Вт, 680-730 мА

Входное напряжение (Input voltage) : AC 90-260 VКПД (Efficiency) : 85 %Коэффициент мощности (Power Factor) : 0,65-0,7Выходное напряжение (Output voltage) : 3-5 ВВыходной ток (Output current) : 650-730 mA (~5%)Пиковый ток (Instantaneous current) : 750 mA (500 nS)Рабочая температура (Operating temperature) : -40 +85 CОтносительная влажность окружающей среды (Ambient humidity) : 20-95 % RHРазмеры (Size) : 23 x 14,5 x 16 mm

led драйвер для питания мощного светодиода. 3-18 В, 1000-1200 мА

ШИМ led драйвер для питания мощного светодиода. Диаметр 17 мм, высота 5,5 мм. Входное напряжение 3-18 В. Выходное напряжение - 3,2-3,7 В. Выходной ток: 1000-1200 мА. Цена 4уе.

ШИМ led драйвер для питания мощного светодиода, 800 мА

Понижающий ШИМ led драйвер для питания 1-3 мощных светодиодов, включенных последовательно.

Диаметр 17 мм, высота 6 мм.

Входное напряжение 3,6-16 В.

Выходное напряжение - 3,2-3,7 В.

Выходной ток: 800-920 мА.

Встроенная защита от перегрева и короткого замыкания на выходе. При нагрузке 4 Вт и более требует теплоотвода от силовых элементов.

Светодиодный драйвер 220 В, 5х1 Вт, 300 мА

Входное напряжение (Input voltage) : AC 90-260 VКПД (Efficiency) : 78 %Выходное напряжение (Output voltage) : 12-17 ВВыходной ток (Output current) : 290-310 mA (~5%)Пиковый ток (Instantaneous current) : 330 mA (500 nS)Коэффициент мощности (Power Factor) : 0,75-0,8Рабочая температура (Operating temperature) : -35 +65 CОтносительная влажность окружающей среды (Ambient humidity) : 20-95 % RHРазмеры (Size LWH) : 25 x 17 x 17 mm

Схема подключения драйвера к светодиодам

Поделитесь полезной информацией тут:
СВЕТОДИОДНАЯ СВЕЧА

   Как самому сделать мерцающую светодиодную свечу на основе нескольких недорогих деталей.

ИК СВЕТОДИОДЫ    Новая разработка LED технологий - инфракрасное светодиодное освещение с мощностью 5 Вт на ток 1А и десятью тонкоплёночными кристаллами. Можно изменить угол обзора и яркость с помощью дополнительной оптической системы. Благодаря необычной форме, инфракрасные светодиоды могут соединяться в матрицу, которая не займет много места, но повысит излучаемую выходную мощность ИК.  
СВЕТОДИОДНАЯ ПОДСВЕТКА СКУТЕРА

   Простая разноцветная подсветка светодиодная, для самостоятельной установки на мотоцикл или скутер. Насмотревшись на различные варианты LED тюнинга мотоциклов, решил собрать подобное и на свой.

led222.ru


Смотрите также