Hl1 светодиод характеристики


Устройства индикации со светодиодами - Club155.ru

www.club155.ru

 

Благодаря таким своим свойствам как: низкое энергопотребление, малые габариты и простота необходимых для работы вспомогательных цепей, светодиоды (имеются ввиду светодиоды видимого диапазона длин волн) получили очень широкое распространение в радиоэлектронной аппаратуре самого разного назначения. Используются они в первую очередь как универсальные устройства индикации режимов работы или устройства аварийной индикации. Реже (обычно только в радиолюбительской практике) встречаются светодиодные автоматы световых эффектов и светодиодные информационные панели (табло).

Для нормального функционирования любого светодиода достаточно обеспечить протекание через него в прямом направлении тока не превышающего максимально допустимый для применяемого прибора. Если величина этого тока не будет слишком низкой, светодиод будет светиться. Для управления состоянием светодиода необходимо обеспечить регулировку (коммутацию) в цепи протекания тока. Это можно сделать с помощью типовых последовательных или параллельных схем коммутации (на транзисторах, диодах и т.п.). Примеры таких схем приведены на рис. 3.7-1, 3.7-2.

 

Рис. 3.7-1. Способы управления состоянием светодиода с помощью транзисторных ключей

 

Рис. 3.7-2. Способы управления состоянием светодиода от цифровых микросхем ТТЛ

 

Примером применения светодиодов в цепях сигнализации могут служить следующие две простые схемы индикаторов сетевого напряжения (рис. 3.7-3, 3.7-4).

Схема на рис. 3.7-3 предназначена для индикации наличия в бытовой сети переменного напряжения. Ранее в подобных устройствах обычно использовались малогабаритные неоновые лампочки. Но светодиоды в этом отношении гораздо более практичны и технологичны. В данной схеме ток через светодиод проходит только во время одной полуволны входного переменного напряжения (во время второй полуволны светодиод шунтируется работающим в прямом направлении стабилитроном). Этого оказывается достаточно для нормального восприятия человеческим глазом света от светодиода как непрерывного излучения. Напряжение стабилизации стабилитрона выбирается несколько большим, чем прямое падение напряжения на используемом светодиоде. Емкость конденсатора \(C1\) зависит от требуемого прямого тока через светодиод.

 

Рис. 3.7-3. Индикатор наличия сетевого напряжения

 

На трех светодиодах выполнено устройство, информирующее об отклонениях сетевого напряжения от номинального значения (рис. 3.7-4). Здесь также свечение светодиодов происходит только во время одного полупериода входного напряжения. Коммутация светодиодов осуществляется через включенные последовательно с ними динисторы. Светодиод \(HL1\) горит всегда, когда сетевое напряжение присутствует, два пороговых устройства на динисторах и делителях напряжения на резисторах обеспечивают включение двух других светодиодов только при достижении входным напряжением установленного порога срабатывания. Если их отрегулировать так, чтобы при нормальном напряжении в сети горели светодиоды \(HL1\), \(HL2\), то при повышенном напряжении будет загораться и светодиод \(HL3\), а при понижении напряжения в сети будет гаснуть светодиод \(HL2\). Входной ограничитель напряжения на \(VD1\), \(VD2\) предотвращает выход устройства из строя при значительном превышении нормального значения напряжения в сети.

 

Рис. 3.7-4. Индикатор уровня сетевого напряжения

 

Схема на рис. 3.7-5 предназначена для сигнализации о перегорании предохранителя. Если предохранитель \(FU1\) цел, падение напряжения на нем очень мало, и светодиод не светится. При перегорании предохранителя напряжение питания через незначительное сопротивление нагрузки прикладывается к цепи индикатора, и светодиод загорается. Резистор \(R1\) выбирается из условия, что через светодиод будет протекать требуемый ток. Не все виды нагрузок могут подойти для данной схемы.

 

Рис. 3.7-5. Светодиодный индикатор перегорания предохранителя

 

Устройство индикации перегрузки стабилизатора напряжения представлено на рис. 3.7‑6. В нормальном режиме работы стабилизатора напряжение на базе транзистора \(VT1\) стабилизировано стабилитроном \(VD1\) и примерно на 1 В больше, чем на эмиттере, поэтому транзистор закрыт и горит сигнальный светодиод \(HL1\). При перегрузке стабилизатора выходное напряжение уменьшается, стабилитрон выходит из режима стабилизации и напряжение на базе \(VT1\) уменьшается. Поэтому транзистор открывается. Поскольку прямое напряжение на включенном светодиоде \(HL1\) больше, чем на \(HL2\) и транзисторе, в момент открывания транзистора светодиод \(HL1\) гаснет, а \( HL2\) — включается. Прямое напряжение на зеленом светодиоде \(HL1\) приблизительно на 0,5 В больше, чем на красном светодиоде \(HL2\), поэтому максимальное напряжение насыщения коллектор-эмиттер транзистора \(VT1\) должно быть меньше 0,5 В. Резистор R1 ограничивает ток через светодиоды, а резистор \(R2\) определяет ток через стабилитрон \(VD1\).

 

Рис. 3.7-6. Индикатор состояния стабилизатора

 

Схема простого пробника, позволяющего определять характер (постоянное или переменное) и полярность напряжения в диапазоне 3...30 В для постоянного и 2,1...21 В для действующего значения переменного напряжения приведена на рис. 3.7-7. Основу пробника составляет стабилизатор тока на двух полевых транзисторах, нагруженный на встречно-параллельно включенные светодиоды. Если на клемму \(XS1\) подается положительный потенциал, а на \(XS2\) — отрицательный, то загорается светодиод HL2, если наоборот — светодиод \(HL1\). Когда на входе переменное напряжение, зажигаются оба светодиода. Если ни один из светодиодов не горит, это означает, что входное напряжение менее 2 В. Потребляемый устройством ток не превышает 6 мА.

 

Рис. 3.7-7. Простой пробник-индикатор характера и полярности напряжения

 

На рис. 3.7-8 дана схема еще одного простого пробника со светодиодной индикацией. Он используется для проверки логического уровня в цифровых цепях, построенных на микросхемах ТТЛ. В исходном состоянии, когда к клемме \(XS1\) ничего не подключено, светодиод \(HL1\) светится слабо. Его режим задается установкой соответствующего напряжения смещения на базе транзистора \(VT1\). Если на вход будет подано напряжение низкого уровня, транзистор закроется, и светодиод погаснет. При наличии на входе напряжения высокого уровня транзистор открывается, яркость свечения светодиода становится максимальной (ток ограничен резистором \(R3\)). При проверке импульсных сигналов яркость HL1 возрастает, если в последовательности сигналов преобладает напряжение высокого уровня, и убывает, если преобладает напряжение низкого уровня. Питание пробника можно осуществлять как от источника питания проверяемого устройства, так и от отдельного источника питания.

 

Рис. 3.7-8. Пробник-индикатор логического уровня ТТЛ

 

Более совершенный пробник (рис. 3.7-9) содержит два светодиода и позволяет не только оценивать логические уровни, но и проверять наличие импульсов, оценивать их скважность и определять промежуточное состояние между напряжениями высокого и низкого уровней. Пробник состоит из усилителя на транзисторе \(VT1\), повышающего его входное сопротивление, и двух ключей на транзисторах \(VT2\), \(VT3\). Первый ключ управляет светодиодом \(HL1\), имеющим зеленый цвет свечения, второй — светодиодом \(HL2\), имеющим красный цвет свечения. При входном напряжении 0,4...2,4 В (промежуточное состояние) транзистор \(VT2\) открыт, светодиод \(HL1\) выключен. В то же время закрыт и транзистор \(VT3\), поскольку падение напряжения на резисторе \(R3\) недостаточно для полного открывания диода \(VD1\) и создания требуемого смещения на базе транзистора. Поэтому \(HL2\) тоже не светится. Когда входное напряжение становится меньше 0,4 В, транзистор \(VT2\) закрывается, загорается светодиод \(HL1\), индицируя наличие логического нуля. При напряжении на входе более 2,4 В открывается транзистор \(VT3\), включается светодиод \(HL2\), индицируя наличие логической единицы. Если на вход пробника подано импульсное напряжение, скважность импульсов можно оценить по яркости свечения того или иного светодиода.

 

Рис. 3.7-9. Улучшенный вариант пробника-индикатора логического уровня ТТЛ

 

Еще один вариант пробника представлен на рис. 3.7-10. Если клемма \(XS1\) никуда не подсоединена, все транзисторы закрыты, светодиоды \(HL1\) и \(HL2\) не работают. На эмиттер транзистора \(VT2\) с делителя \(R2-R4\) поступает напряжение около 1,8 В, на базу \(VT1\) — около 1,2 В. Если на вход пробника подать напряжение выше 2,5 В, напряжение смещения база-эмиттер транзистора \(VT2\) превысит 0,7 В, он откроется и своим коллекторным током откроет транзистор \(VT3\). Светодиод \(HL1\) включится, индицируя состояние логической единицы. Ток коллектора \(VT2\), примерно равный току его эмиттера, ограничивается резисторами \(R3\) и \(R4\). При превышении напряжением на входе уровня 4,6 В (что возможно при проверке выходов схем с открытым коллектором) транзистор \(VT2\) входит в режим насыщения, и если не ограничить ток базы \(VT2\) резистором \(R1\), транзистор \(VT3\) закроется и светодиод \(HL1\) выключится. При уменьшении напряжения на входе ниже 0,5 В открывается транзистор \(VT1\), его коллекторный ток открывает транзистор \(VT4\), включается \(HL2\), индицируя состояние логического нуля. С помощью резистора \(R6\) регулируется яркость свечения светодиодов. Подбором резисторов \(R2\) и \(R4\) можно установить необходимые пороги включения светодиодов.

 

Рис. 3.7-10. Пробник-индикатор логического уровня на четырех транзисторах

 

Для индикации точной настройки в радиоприемниках часто применяются простые устройства, содержащие один, а иногда и несколько, светодиодов разного цвета свечения.

Схема экономичного светодиодного индикатор настройки для приемника с питанием от батареек приведена на рис. 3.7-11. Ток потребления устройства не превышает 0,6 мА в отсутствие сигнала, а при точной настройке составляет 1 мА. Высокая экономичность достигается за счет питания светодиода импульсным напряжением (т.е. светодиод не светится непрерывно, а часто мигает, однако из-за инерционности зрения такое мерцание не заметно на глаз). Генератор импульсов выполнен на однопереходном транзисторе \(VT3\). Генератор вырабатывает импульсы длительностью около 20 мс, следующие с частотой 15 Гц. Эти импульсы управляют работой ключа на транзисторе \(DA1.2\) (один из транзисторов микросборки \(DA1\)). Однако в отсутствие сигнала светодиод не включается, так как при этом сопротивление участка эмиттер-коллектор транзистора \(VT2\) велико. При точной настройке транзистор \(VT1\), а за ним и \(DA1.1\) и \(VT2\) откроются настолько, что в моменты, когда открыт транзистор \(DA1.2\), будет загораться светодиод \(HL1\). Чтобы уменьшить потребляемый ток, эмиттерная цепь транзистора \(DA1.1\) подключена к коллектору транзистора \(DA1.2\), благодаря чему последние два каскада (\(DA1.2\), \(VT2\)) также работают в ключевом режиме. При необходимости подбором резистора \(R4\) можно добиться слабого начального свечения светодиода \(HL1\). В этом случае он выполняет и функцию индикатора включения приемника.

 

Рис. 3.7-11. Экономичный светодиодный индикатор настройки

 

Экономичные светодиодные индикаторы могут понадобиться не только в радиоприемниках с батарейным питанием, но и во множестве других носимых устройств. На рис. 3.7‑12, 3.7‑13, 3.7‑14 приведено несколько схем таких индикаторов. Все они работают по уже описанному импульсному принципу и по сути представляют собой экономичные генераторы импульсов, нагруженные на светодиод. Частота генерации в таких схемах выбирается достаточно низкой, фактически на границе зрительного восприятия, когда мигания светодиода начинают отчетливо восприниматься человеческим глазом.

 

Рис. 3.7-12. Экономичный светодиодный индикатор на однопереходном транзисторе

 

Рис. 3.7-13. Экономичный светодиодный индикатор на однопереходном и биполярном транзисторах

 

Рис. 3.7-14. Экономичный светодиодный индикатор на двух биполярных транзисторах

 

В УКВ ЧМ приемниках для индикации настройки можно применять три светодиода. Для управления таким индикатором используется сигнал с выхода ЧМ детектора, в котором постоянная составляющая положительна при незначительной расстройке в одну сторону от частоты станции и отрицательна при незначительной расстройке в другую сторону. На рис. 3.7-15 приведена схема простого индикатора настройки, работающего по описанному принципу. Если напряжение на входе индикатора близко к нулю, то все транзисторы закрыты и светодиоды \(HL1\) и \(HL2\) не излучают, а через \(HL3\) при этом протекает ток, определяемый напряжением питания и сопротивлением резисторов \(R4\) и \(R5\). При указанных на схеме номиналах он примерно равен 20 мА. Как только на входе индикатора появляется напряжение, превышающее 0,5 В, транзистор \(VT1\) открывается и включается светодиод \(HL1\). Одновременно открывается транзистор \(VT3\), он шунтирует светодиод \(HL3\), и тот гаснет. Если напряжение на входе отрицательное, но по абсолютному значению больше 0,5 В, то включается светодиод \(HL2\), а \(HL3\) выключается.

 

Рис. 3.7-15. Индикатор настройки для УКВ-ЧМ приемника на трех светодиодах

 

Схема еще одного варианта простого индикатора точной настройки для УКВ ЧМ приемника представлена на рис. 3.7-16.

 

Рис. 3.7-16. Индикатор настройки для УКВ ЧМ приемника (вариант 2)

 

В магнитофонах, низкочастотных усилителях, эквалайзерах и т.п. находят применение светодиодные индикаторы уровня сигнала. Число индицируемых такими индикаторами уровней может варьироваться от одного-двух (т.е. контроль типа “сигнал есть – сигнала нет”) до нескольких десятков.

Схема двухуровнего двухканального индикатора уровня сигнала приведена на рис. 3.7‑17. Каждая из ячеек \(A1\), \(A2\) выполнена на двух транзисторах разной структуры. При отсутствии сигнала на входе оба транзистора ячеек закрыты, поэтому светодиоды \(HL1\), \(HL2\) не горят. В таком состоянии устройство находится до тех пор, пока амплитуда положительной полуволны контролируемого сигнала не превысит примерно на 0,6 В постоянное напряжение на эмиттере транзистора \(VT1\) в ячейке \(A1\), заданное делителем \(R2\), \(R3\). Как только это произойдет, транзистор \(VT1\) начнет открываться, в цепи коллектора появится ток, а поскольку он в то же время является и током эмиттерного перехода транзистора \(VT2\), транзистор \(VT2\) тоже начнет открываться. Возрастающее падение напряжения на резисторе \(R6\) и светодиоде \(HL1\) приведет к увеличению тока базы транзистора \(VT1\), и он откроется еще больше. В результате очень скоро оба транзистора окажутся полностью открыты и светодиод \(HL1\) включится. При дальнейшем росте амплитуды входного сигнала аналогичный процесс протекает в ячейке \(A2\), после чего загорается светодиод \(HL2\). С уменьшением уровня сигнала ниже установленных порогов срабатывания ячейки возвращаются в исходное состояние, светодиоды гаснут (сначала \(HL2\), затем \(HL1\)). Гистерезис не превышает 0,1 В. При указанных в схеме значениях сопротивлений, ячейка \(A1\) срабатывает при амплитуде входного сигнала примерно 1,4 В, ячейка \(A2\) — 2 В.

 

Рис. 3.7-17. Двухканальный индикатор уровня сигнала

 

Многоканальный индикатор уровня на логических элементах представлен на рис. 3.7‑18. Такой индикатор можно применять, например, в усилителе НЧ (организовав из ряда светодиодов индикатора световую шкалу). Диапазон входного напряжения этого устройства может колебаться от 0,3 до 20 В. Для управления каждым светодиодом используется \(RS\)-триггер, собранный на элементах 2И‑НЕ. Пороги срабатывания этих триггеров задаются резисторами \(R2\), \(R4-R16\). На линию “сброс” периодически должен подаваться импульс гашения светодиодов (разумным будет подавать такой импульс с периодичностью 0,2...0,5 с).

 

Рис. 3.7-18. Многоканальный индикатор уровня НЧ сигнала на \(RS\)-триггерах

 

Приведенные выше схемы индикаторов уровня обеспечивали резкое срабатывание каждого канала индикации (т.е. светодиод в них либо светится с заданным режимом яркости, либо погашен). В шкальных индикаторах (линия последовательно срабатывающих светодиодов) такой режим работы совсем не обязателен. Поэтому для этих устройств могут использоваться более простые схемы, в которых управление светодиодами осуществляется не отдельно по каждому каналу, а совместно. Последовательное включение ряда светодиодов при увеличении уровня входного сигнала достигается за счет последовательного включения делителей напряжения (на резисторах или других элементах). В таких схемах происходит постепенное увеличение яркости свечения светодиодов при нарастании уровня входного сигнала. При этом для каждого светодиода устанавливается свой токовый режим, такой, что свечение указанного светодиода визуально наблюдается только при достижении входным сигналом соответствующего уровня (при дальнейшем увеличении уровня входного сигнала светодиод горит все более ярко, но до определенного предела). Простейший вариант индикатора, работающего по описанному принципу приведен на рис. 3.7-19.

 

Рис. 3.7-19. Простой индикатор уровня сигнала НЧ

 

При необходимости увеличения количества уровней индикации и повышения линейности индикатора схема включения светодиодов должна быть несколько изменена. Подойдет, например, индикатор по схеме рис. 3.7-20. В нем, кроме прочего, имеется и достаточно чувствительный входной усилитель, обеспечивающий работу как от источника постоянного напряжения, так и от сигнала звуковой частоты (при этом индикатор управляется только положительными полуволнами входного переменного напряжения).

 

Рис. 3.7-20. Линейный индикатор уровня со светодиодной шкалой

 

 

< Предыдущая Следующая >
 

Характеристики светодиодов: потребление тока, напряжение, мощность и светоотдача

Времена, когда светодиоды использовали только в качестве индикаторов включения приборов, давно прошли. Современные светодиодные приборы могут полностью взаимозаменить лампы накаливания в бытовых, промышленных и уличных светильниках. Этому способствуют различные характеристики светодиодов, зная которые можно правильно подобрать LED-аналог. Использование светодиодов, учитывая их основные параметры, открывает обилие возможностей в сфере освещения.

Светодиоды вполне могут заменить обычные лампы накаливания

Какие бывают светодиоды

Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

Основой светодиода является искусственный полупроводниковый кристаллик

Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

Применение светодиодной подсветки в интерьере кухни

Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве светодиодных ламп с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

Обратите внимание! Сравнивая лампы на SMD и COB светодиодах можно отметить, что первые поддаются ремонту путем замены вышедшего из строя светодиода. Если не работает лампа на COB светодиодах, придется менять всю плату с диодами.

Характеристики светодиодов

Выбирая для освещения подходящую светодиодную лампу, следует учитывать параметры светодиодов. К ним относят напряжение питания, мощность, рабочий ток, эффективность (светоотдача), температуру свечения (цвет), угол излучения, размеры, срок деградации. Зная основные параметры, можно будет без труда выбрать приборы для получения того или иного результата освещенности.

LED-технологии используются в оформлении табло аэропортов и вокзалов

Величина тока потребления светодиода

Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.

Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

Светодиодная гирлянда может использоваться в качестве декора помещения

Напряжение светодиодов

Как узнать напряжение светодиодов? Дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на кристалле напряжение. Именно это значение берется во внимание при расчетах.

Учитывая применение различных полупроводников для светодиодов, напряжение у каждого из них может быть разным. Как узнать, на сколько Вольт светодиод? Определить можно по цвету свечения приборов. Например, для синих, зеленых и белых кристаллов напряжение составляет около 3В, для желтых и красных – от 1,8 до 2,4В.

При использовании параллельного подключения светодиодов идентичного номинала с величиной напряжения в 2В можно столкнуться со следующим: в результате разброса параметров одни излучающие диоды выйдут из строя (сгорят), а другие будут очень слабо светиться. Это произойдет ввиду того, что при увеличении напряжения даже на 0,1В наблюдается увеличение силы тока, проходящего через светодиод, в 1,5 раза. Поэтому так важно следить, чтобы ток соответствовал номиналу светодиода.

100Вт лампы накаливания эквивалентно 12-12,5Вт LED-светильника

Светоотдача, угол свечения и мощность светодиодов

Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.

Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.

Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:

Мощность лампы накаливания, Вт Соответствующая мощность светодиодного светильника, Вт
100 12-12,5
75 10
60 7,5-8
40 5
25 3

 

При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.

Цветовая температура LED-источников

Одним из важных параметров светодиодных источников является температура свечения. Единицы измерения этой величины – градусы Кельвина (К). Следует отметить, что все источники света по температуре свечения разделяют на три класса, среди которых теплый белый имеет цветовую температуру менее 3300 К, дневной белый – от 3300 до 5300 К и холодный белый свыше 5300 К.

Обратите внимание! Комфортное восприятие человеческим глазом светодиодного излучения непосредственно зависит от цветовой температуры LED-источника.

Цветовая температура обычно указывается на маркировке светодиодных ламп. Она обозначается четырехзначным числом и буквой К. Выбор LED-ламп с определенной цветовой температурой напрямую зависит от особенностей применения ее для освещения. Предложенная ниже таблица отображает варианты использования светодиодных источников с разной температурой свечения:

Цвет свечения светодиодов Цветовая температура, К Варианты использования в освещении
Белый Теплый 2700-3500 Освещение бытовых и офисных помещений как наиболее подходящий аналог лампы накаливания
Нейтральный (дневной) 3500-5300 Отличная цветопередача таких ламп позволяет применять их для освещения рабочих мест на производстве
Холодный свыше 5300 Используется в основном для освещения улиц, а также применяется в устройстве ручных фонарей
Красный 1800 Как источник декоративной и фито-подсветки
Зеленый Подсветка поверхностей в интерьере, фито-подсветка
Желтый 3300 Световое оформление интерьеров
Синий 7500 Подсветка поверхностей в интерьере, фито-подсветка

 

Волновая природа цвета позволяет выразить цветовую температуру светодиодов, используя длину волны. Маркировка некоторых светодиодных приборов отражает цветовую температуру именно в виде интервала различных длин волн. Длина волны имеет обозначение λ и измеряется в нанометрах (нм).

Типоразмеры SMD светодиодов и их характеристики

Учитывая размер SMD светодиодов, приборы классифицируются в группы с различными характеристиками. Наиболее популярные светодиоды с типоразмерами 3528, 5050, 5730, 2835, 3014 и 5630. Характеристики SMD светодиодов в зависимости от размеров рознятся. Так, разные типы SMD светодиодов отличаются по яркости, цветовой температуре, мощности. В маркировке светодиодов первые две цифры показывают длину и ширину прибора.

Светодиоды SMD 5630 на LED-ленте

Основные параметры светодиодов SMD 2835

К основным характеристикам SMD светодиодов 2835 относят увеличенную площадь излучения. В сравнении с прибором SMD 3528, который имеет круглую рабочую поверхность, площадь излучения SMD 2835 имеет прямоугольную форму, что способствует большей светоотдаче при меньшей высоте элемента (около 0,8 мм). Световой поток такого прибора составляет 50 лм.

Корпус светодиодов SMD 2835 выполнен из термостойкого полимера и может выдерживать температуру до 240°С. Следует отметить, что деградация излучения в этих элементах составляет менее 5% в течение 3000 часов функционирования. Кроме того, прибор имеет достаточно низкое тепловое сопротивление перехода кристалл-подложка (4 С/Вт). Рабочий ток в максимальном значении – 0,18А, температура кристалла – 130°С.

По цвету свечения выделяют теплый белый с температурой свечения 4000 К, дневной белый – 4800 К, чистый белый – от 5000 до 5800 К и холодный белый с цветовой температурой 6500-7500 К. Стоит отметить, что максимальная величина светового потока у приборов с холодным белым свечением, минимальная – у светодиодов теплого белого цвета. В конструкции прибора увеличены контактные площадки, что способствует лучшему отводу тепла.

Полезный совет! Светодиоды SMD 2835 могут быть использованы для любого типа монтажа.

Размеры светодиода SMD 2835

Характеристики светодиодов SMD 5050

В конструкции корпуса SMD 5050 размещены три однотипных светодиода. LED источники синего, красного и зеленого цвета имеют технические характеристики, аналогичные кристаллам SMD 3528. Значение рабочего тока каждого из трех светодиодов составляет 0,02А, следовательно суммарная величина тока всего прибора 0,06А. Для того, чтобы светодиоды не вышли из строя, рекомендуется не превышать эту величину.

LED приборы SMD 5050 имеют прямое напряжение величиной 3-3,3В и светоотдачу (сетевой поток) 18-21 лм. Мощность одного светодиода складывается из трех величин мощности каждого кристалла (0,7Вт) и составляет 0,21Вт. Цвет свечения, испускаемый приборами, может быть белым во всех оттенках, зеленым, синим, желтым и многоцветным.

Близкое расположение светодиодов разных цветов в одном корпусе SMD 5050 позволило реализовать многоцветные светодиоды с отдельным управлением каждым цветом. Для регулирования светильников с использованием светодиодов SMD 5050 используют контроллеры, благодаря чему цвет свечения можно плавно изменять от одного к другому через заданное количество времени. Обычно такие приборы имеют несколько режимов управления и могут регулировать яркость свечения светодиодов.

Размеры светодиода SMD 5050

Типовые характеристики светодиода SMD 5730

Светодиоды SMD 5730 – современные представители LED-приборов, корпус которых имеет геометрические размеры 5,7х3 мм. Они относятся к сверхярким светодиодам, характеристики которых стабильны и качественно отличаются от параметров предшественников. Изготовленные с применением новых материалов, эти светодиоды отличаются повышенной мощностью и высокоэффективным световым потоком. Кроме того, они могут работать в условиях повышенной влажности, устойчивы к перепадам температур и вибрации, имеют длительный срок службы.

Существует две разновидности приборов: SMD 5730-0,5 с мощностью 0,5Вт и SMD 5730-1 с мощностью 1Вт. Отличительной особенностью приборов является возможность их функционирования на импульсном токе. Величина номинального тока  SMD 5730-0,5 составляет 0,15А, при импульсной работе прибор может выдерживать силу тока до 0,18А. Данный тип светодиодов обеспечивает световой поток до 45 лм.

Светодиоды SMD 5730-1 работают на постоянном токе 0,35А, при импульсном режиме – до 0,8А. Эффективность светоотдачи такого прибора может составить до 110 лм. Благодаря термостойкому полимеру, корпус прибора выдерживает температуру до 250°С. Угол рассеивания обоих типов SMD 5730 равен 120 градусам. Степень деградации светового потока составляет менее 1% при работе в течение 3000 часов.

Размеры светодиода SMD 5730

Характеристики светодиодов Cree

Компания Cree (США) занимается разработкой и выпуском сверхъярких и самых мощных светодиодов. Одна из групп светодиодов Cree представлена серией приборов Xlamp, которые делятся на однокристальные и многокристальные. Одной из особенностей однокристальных источников является распределение излучения по краям прибора. Это инновация позволила выпускать светильники с большим углом свечения, используя минимальное количество кристаллов.

В серии LED-источников XQ-E High Intensity угол свечения составляет от 100 до 145 градусов. Имея небольшие геометрические размеры 1,6х1,6 мм, мощность сверхярких светодиодов – 3 Вольта, а световой поток – 330 лм. Это одна из новейших разработок компании Cree. Все светодиоды, конструкция которых разработана на базе одного кристалла, имеют качественную цветопередачу в пределах CRE 70-90.

Статья по теме:

Как сделать или починить LED-гирлянду самостоятельно. Цены и основные характеристики наиболее популярных моделей.

Компания Cree выпустила несколько вариантов многокристальных LED-приборов с новейшими типами питания от 6 до 72 Вольт. Многокристальные светодиоды делятся на три группы, в которые входят приборы с высоким напряжением, мощностью до 4Вт и выше 4Вт. В источниках до 4Вт собраны 6 кристаллов в корпусе типа MX и ML. Угол рассеивания составляет 120 градусов. Купить светодиоды Cree такого типа можно с белым теплым и холодным цветом свечения.

Полезный совет! Несмотря на высокую надежность и качество света, купить мощные светодиоды серии MX и ML можно по относительно небольшой цене.

В группу свыше 4Вт входят светодиоды из нескольких кристаллов. Самыми габаритными в группе являются приборы мощностью 25Вт, представленные серией MT-G. Новинка компании – светодиоды модели XHP. Один из крупных LED-приборов имеет корпус 7х7 мм, его мощность 12Вт, светоотдача 1710 лм. Светодиоды с высоким напряжением питания объединяют в себе небольшие габариты и высокую светоотдачу.

LED-лампы серии XQ-E High Intensity производителя Cree (США)

Схемы подключения светодиодов

Существуют определенные правила подключения светодиодов. Беря во внимание, что проходящий через прибор ток движется только в одном направлении, для длительного и стабильного функционирования LED-приборов важно учитывать не только определенное напряжение, но и оптимальную величину тока.

Схема подключения светодиода к сети 220В

В зависимости от используемого источника питания, различают два вида схем подключения светодиодов к 220В. В одном из случаев используется драйвер с ограниченным током, во втором – специальный блок питания, стабилизирующий напряжение. Первый вариант учитывает использование специального источника с определенной силой тока. Резистор в данной схеме не требуется, а количество подключаемых светодиодов ограничивается мощностью драйвера.

Для обозначения светодиодов на схеме используются пиктограммы двух видов. Над каждым схематическим их изображением находятся две небольшие параллельные стрелочки, направленные вверх. Они символизируют яркое свечение LED-прибора. Перед тем как подключить светодиод к 220В используя блок питания, необходимо в схему включить резистор. Если это условие не выполнить, это приведет к тому, что рабочий ресурс светодиода существенно сократится или он попросту выйдет из строя.

Схема подключения светодиодов к сети 220В с использованием гасящего конденсатора С1

Если при подключении использовать блок питания, то стабильным в схеме будет лишь напряжение. Учитывая незначительное внутреннее сопротивление LED-прибора, включение его без ограничителя тока приведет к сгоранию прибора. Именно поэтому в схему включения светодиода вводят соответствующий резистор. Следует отметить, что резисторы бывают с разным номиналом, поэтому их следует правильно рассчитывать.

Полезный совет! Негативным моментом схем включения светодиода в сеть 220 Вольт с использованием резистора становится рассеивание большой мощности, когда требуется подключить нагрузку с повышенным потреблением тока. В этом случае резистор заменяют гасящим конденсатором.

Как рассчитать сопротивление для светодиода

При расчете сопротивления для светодиода руководствуются формулой:

U = IхR,

где U – напряжение, I – сила тока, R – сопротивление (закон Ома). Допустим, необходимо подключить светодиод с такими параметрами: 3В – напряжение и 0,02А – сила тока. Чтобы при подключении светодиода к 5 Вольтам на блоке питания он не вышел из строя, надо убрать лишние 2В (5-3 = 2В). Для этого необходимо включить в схему резистор с определенным сопротивлением, которое рассчитывается с помощью закона Ома:

R = U/I.

Резисторы с различными значениями сопротивления

Таким образом, отношение 2В к 0,02А составит 100 Ом, т.е. именно такой необходим резистор.

Очень часто бывает, что учитывая параметры светодиодов, сопротивление резистора имеет нестандартное для прибора значение. Такие ограничители тока нельзя отыскать в точках продажи, например, 128 или 112,8 Ом. Тогда следует использовать резисторы, сопротивление которых имеет ближайшее большее значение по сравнению с расчетным. При этом светодиоды будут функционировать не в полную силу, а лишь на 90-97%, но это будет незаметно для глаза и положительно отразится на ресурсе прибора.

В интернете представлено множество вариантов калькуляторов расчетов светодиодов. Они учитывают основные параметры: падение напряжения, номинальный ток, напряжение на выходе, количество приборов в цепи. Задав в поле формы параметры LED-приборов и источников тока, можно узнать соответствующие характеристики резисторов. Для определения сопротивления маркированных цветом токоограничителей также существуют онлайн расчеты резисторов для светодиодов.

Схемы параллельного и последовательного подключения светодиодов

При сборке конструкций из нескольких LED-приборов используют схемы включения светодиодов в сеть 220 Вольт с последовательным или параллельным соединением. При этом для корректного подключения следует учитывать, что при последовательном включении светодиодов требуемое напряжение представляет собой сумму падений напряжений каждого прибора. В то время как при параллельном включении светодиодов складывается сила тока.

Схемы параллельного подключения светодиодов. В варианте 1 на каждую цепь диодов используется отдельный резистор, в варианте 2 — один общий для всех цепей

Если в схемах используются LED-приборы с разными параметрами, то для стабильной работы необходимо рассчитать резистор для каждого светодиода отдельно. Следует отметить, что двух совершенно одинаковых светодиодов не существует. Даже приборы одной модели имеют незначительные отличия в параметрах. Это приводит к тому, что при подключении большого их количества в последовательную или параллельную схему с одним резистором, они могут быстро деградировать и выйти из строя.

Обратите внимание! При использовании одного резистора в параллельной или последовательной схеме можно подключать лишь LED-приборы с идентичными характеристиками.

Расхождение в параметрах при параллельном подключении нескольких светодиодов, допустим 4-5 шт., не повлияет на работу приборов. А если в такую схему подключить много светодиодов – это будет плохим решением. Даже если LED-источники имеют незначительный разброс характеристик, это приведет к тому, что некоторые приборы будут излучать яркий свет и быстро сгорят, а другие – будут слабо светиться.  Поэтому при параллельном подключении следует всегда использовать отдельный резистор для каждого прибора.

Что касается последовательного соединения, то здесь имеет место экономное потребление, так как вся цепь расходует количество тока, равное потреблению одного светодиода. При параллельной схеме, потребление составляет сумму расходования всех включенных в схему LED-источников, включенных в схему.

Схема последовательного подключения светодиодов

Как подключить светодиоды к 12 Вольтам

В конструкции некоторых приборов резисторы предусмотрены еще на этапе изготовления, что дает возможность подключения светодиодов к 12 Вольт или 5 Вольт. Однако такие приборы не всегда можно найти в продаже. Поэтому в схеме подключения светодиодов к 12 вольт предусматривают ограничитель тока. Первым делом необходимо выяснить характеристики подключаемых светодиодов.

Такой параметр, как прямое падение напряжения у типовых LED-приборов составляет около 2В. Номинальный ток у этих светодиодов соответствует 0,02А. Если требуется подключить такой светодиод к 12В, то «лишние» 10В (12 минус 2) необходимо погасить ограничительным резистором. С помощью закона Ома можно рассчитать для него сопротивление. Получим, что 10/0,02 = 500 (Ом). Таким образом, необходим резистор с номиналом 510 Ом, который является ближайшим по ряду электронных компонентов Е24.

Чтобы такая схема работала стабильно, требуется еще вычислить мощность ограничителя. Используя формулу, исходя из которой мощность равна произведению напряжения и тока, рассчитываем ее значение. Напряжение величиной 10В умножаем на ток 0,02А и получаем 0,2Вт. Таким образом, необходим резистор, стандартный номинал мощности которого составляет 0,25Вт.

Схема подключения RGB светодиодной ленты к 12В

Если в схему необходимо включить два LED-прибора, то следует учитывать, что напряжение падающее на них, будет составлять уже 4В. Соответственно для резистора останется погасить уже не 10В, а 8В. Следовательно, дальнейший расчет сопротивления и мощности резистора делается на основании этого значения. Расположение резистора в схеме можно предусмотреть в любом месте: со стороны анода, катода, между светодиодами.

Как проверить светодиод мультиметром

Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».

Полезный совет! Перед тем как проверить светодиод на работоспособность, рекомендуется приглушить основное освещение, так как при тестировании ток очень низкий и светодиод будет излучать свет так слабо, что при нормальном освещении этого можно не заметить.

Схема проверки светодиода с помощью цифрового мультиметра

Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.

Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.

Что можно сделать из светодиодов своими руками

Многие радиолюбители практикуют сборку различных конструкций из светодиодов своими руками. Собранные самостоятельно изделия не уступают по качеству, а иногда и превосходят аналоги производственного изготовления. Это могут быть цветомузыкальные устройства, мигающие конструкции светодиодов, бегущие огни на светодиодах своими руками и многое другое.

Использование светодиодов в создании сценических костюмов

Сборка стабилизатора тока для светодиодов своими руками

Чтобы ресурс светодиода не выработался раньше положенного срока, необходимо чтобы ток, протекающий через него, имел стабильное значение. Известно, что светодиоды красного, желтого и зеленого цвета могут справляться с повышенной нагрузкой по току. В то время как сине-зеленые и белые LED-источники даже при небольшой перегрузке сгорают за 2 часа. Таким образом, для нормальной работы светодиода необходимо решить вопрос с его питанием.

Если собрать цепочку из последовательно или параллельно соединенных светодиодов, то обеспечить им идентичное излучение можно в том случае, если ток, проходящий через них, будет иметь одинаковую силу. Кроме того, импульсы обратного тока могут негативно повлиять на ресурс LED-источников. Чтобы такого не произошло, необходимо включить в схему стабилизатор тока для светодиодов.

Качественные признаки светодиодных светильников зависят от применяемого драйвера – устройства, которое преобразует напряжение в стабилизированный ток с конкретным значением. Многие радиолюбители собирают схему питания светодиодов от 220В своими руками на базе микросхемы LM317. Элементы для такой электронной схемы имеют небольшую стоимость и такой стабилизатор легко сконструировать.

Схема подключения мощного светодиода с использованием интегрального стабилизатора напряжения LM317

При использовании стабилизатора тока на LM317 для светодиодов регулируют ток в пределах 1А. Выпрямитель на базе LM317L стабилизирует ток до 0,1А. В схеме устройства используют всего лишь один резистор. Его рассчитывают посредством онлайн калькулятора сопротивления для светодиода. Для питания подойдут имеющиеся подручные устройства: блоки питания от принтера, ноутбука или другой бытовой электроники. Более сложные схемы собирать самостоятельно не выгодно, так как их проще приобрести в готовом виде.

ДХО из светодиодов своими руками

Применение на автомобилях дневных ходовых огней (ДХО) заметно повышает видимость автомобиля в светлое время другими участниками дорожного движения. Многие автолюбители практикуют самостоятельную сборку ДХО с использованием светодиодов. Один из вариантов – устройство ДХО из 5-7 светодиодов мощностью 1Вт и 3Вт на каждый блок. Если использовать менее мощные LED-источники, световой поток не будет соответствовать нормативам для таких огней.

Полезный совет! При изготовлении ДХО своими руками, учитывайте требования ГОСТа: световой поток 400-800 Кд, угол свечения в горизонтальной плоскости – 55 градусов, в вертикальной – 25 градусов, площадь – 40 см².

Дневные ходовые огни улучшают видимость автомобиля на дороге

Для основания можно использовать плату из алюминиевого профиля с площадками для крепления светодиодов. Светодиоды фиксируются на плате с помощью теплопроводного клеящего состава. В соответствии с типом LED-источников подбирается оптика. В данном случае подойдут линзы с углом свечения 35 градусов. Линзы устанавливаются на каждый светодиод отдельно. Провода выводятся в любую удобную сторону.

Далее изготавливается корпус для ДХО, служащий одновременно и радиатором. Для этого можно использовать П-образный профиль. Готовый светодиодный модуль располагают внутри профиля, закрепив его на винтах. Все свободное пространство можно залить прозрачным герметиком на силиконовой основе, оставив на поверхности только линзы. Такое покрытие будет служить в качестве влагозащиты.

Подключение ДХО к питанию производится с обязательным использованием резистора, сопротивление которого предварительно просчитывается и проверяется. Способы подключения могут быть разными, учитывая модель автомобиля. Схемы подключения можно отыскать в сети интернет.

Схема подключения ДХО с блоком управления

Как сделать, чтобы светодиоды мигали

Наиболее популярными мигающими светодиодами, купить которые можно в готовом виде, являются приборы, регулируемые уровнем потенциала. Мигание кристалла происходит за счет изменения питания на выводах прибора. Так, двухцветный красно-зеленый LED-прибор излучает свет в зависимости от направления проходящего по нему тока. Эффект мигания в RGB-светодиоде достигается подключением трех выводов для отдельного управления к конкретной системе регулирования.

Но можно сделать мигающим и обычный одноцветный светодиод, имея в арсенале минимум электронных компонентов. Перед тем как сделать мигающий светодиод, необходимо выбрать работающую схему, которая будет простой и надежной. Можно использовать схему мигающего светодиода, которая будет запитана от источника с напряжением 12В.

Схема состоит из транзистора небольшой мощности Q1 (подойдет кремниевый высокочастотный КТЗ 315 или его аналоги), резистора R1 820-1000 Ом, 16-вольтового конденсатора С1 емкостью 470 мкФ и LED-источника. При включении схемы конденсатор заряжается до 9-10В, после этого транзистор на миг открывается и отдает накопленную энергию светодиоду, который начинает мигать. Данную схему можно реализовать только в случае питания от источника 12В.

Мигание светодиодов используется, например, в елочной гирлянде

Можно собрать более усовершенствованную схему, которая работает по аналогии с транзисторным мультивибратором. В схему входят транзисторы КТЗ 102 (2 шт.), резисторы R1 и R4 по 300 Ом каждый, чтобы ограничить ток, резисторы R2 и R3 по 27000 Ом, чтобы задавать ток базы транзисторов, 16-вольтовые полярные конденсаторы (2 шт. емкостью 10 мкФ) и два LED-источника. Данная схема питается от источника постоянного напряжения 5В.

Схема работает по принципу «пары Дарлингтона»: конденсаторы С1 и С2 попеременно заряжаются и разряжаются, что служит причиной открывания конкретного транзистора. Когда один транзистор отдает энергию С1, загорается один светодиод. Далее плавно заряжается С2, а ток базы VT1 снижается, что приводит к закрытию VT1 и открытию VT2 и загорается другой светодиод.

Полезный совет! Если использовать напряжение питания свыше 5В, потребуется применить резисторы с другим номиналом, чтобы исключить выход из строя светодиодов.

Схема вспышек на светодиоде

Сборка цветомузыки на светодиодах своими руками

Чтобы реализовать достаточно сложные схемы цветомузыки на светодиодах своими руками, необходимо сначала разобраться, как работает простейшая схема цветомузыки. Она состоит из одного транзистора, резистора и LED-прибора. Такую схему можно запитать от источника с номиналом от 6 до 12В. Функционирование схемы происходит за счет каскадного усиления с общим излучателем (эмиттером).

На базу VT1 поступает сигнал с изменяющейся амплитудой и частотой. В том случае, когда колебания сигнала превышают заданный порог, транзистор открывается и загорается светодиод. Минусом данной схемы является зависимость мигания от степени  звукового сигнала. Таким образом эффект цветомузыки будет проявляться только при определенной степени громкости звука. Если звук увеличить. светодиод будет все время гореть, а при уменьшении – чуть вспыхивать.

Чтобы добиться полноценного эффекта, используют схему цветомузыки на светодиодах с разбивкой диапазона звука на три части. Схема с трехканальным преобразователем звука питается от источника напряжением 9В. Огромное количество схем цветомузыки можно найти в интернете на различных форумах радиолюбителей. Это могут быть схемы цветомузыки с использованием одноцветной ленты, RGB-светодиодной ленты, а также схемы плавного включения и выключения светодиодов. Так же в сети можно отыскать схемы бегущих огней на светодиодах.

Схема для сборки цветомузыки своими руками

Конструкция индикатора напряжения на светодиодах своими руками

Схема индикатора напряжения включает резистор R1 (переменное сопротивление 10 кОм), резисторы R1, R2 (1кОм), два транзистора VT1 КТ315Б, VT2 КТ361Б, три светодиода – HL1, HL2 (красные), HLЗ (зеленый). X1, X2 – 6-вольтовые источники питания. В данной схеме рекомендуется использовать LED-приборы с напряжением 1,5В.

Алгоритм работы самодельного светодиодного индикатора напряжения представляет собой следующее: когда подается напряжение, светится центральный LED-источник зеленого цвета. В случае падения напряжения, включается светодиод красного цвета, расположенный слева. Увеличение напряжения заставляет светиться красный светодиод, размещенный справа. При среднем положении резистора все транзисторы будут в закрытом положении, и напряжение поступит лишь на центральный зеленый светодиод.

Открытие транзистора VT1 происходит, когда ползунок резистора передвигают вверх, тем самым повышая напряжение. В этом случае поступление напряжения на HL3 прекращается, и оно подается на HL1. При перемещении ползунка вниз (понижение напряжение) происходит закрытие транзистора VT1 и открытие VT2, что даст питание светодиоду HL2. С незначительной задержкой LED HL1 погаснет, HL3 один раз мелькнет и засветится HL2.

Схема сборки индикатора напряжения на светодиодах своими руками

Такую схему можно собрать, используя радиодетали от устаревшей техники. Некоторые собирают ее на текстолитовой плате, соблюдая масштаб 1:1 c размерами деталей, чтобы все элементы могли разместиться на плате.

Безграничный потенциал LED-освещения дает возможность самостоятельно конструировать из светодиодов различные светотехнические приборы с отличными характеристиками и достаточно низкой стоимостью.

Запись Характеристики светодиодов: потребление тока, напряжение, мощность и светоотдача впервые появилась Remoo.RU.

www.t-spectr.ru

Заметки для мастера - Электроника для автолюбителя

          Индикатор напряжения автомобильного АКБ

 

        Устройство, показанное на рис.1, сигнализирует с помощью индикаторных светодиодов о состоянии аккумуляторной батареи автомобиля.

 

 

Рис.1

        При пониженном напряжении аккумуляторной батареи (менее 11,8 В) слабо горит светодиод HL1 красного свечения. Во время зарядки батареи (напряжение 12,8…14,8 В) срабатывает компаратор DA1.2 – включается светодиод HL2 зеленого свечения. Дальнейшее повышение напряжения (более 14,8 В) приводит к тому, что часть выходного тока компаратора DA1.2 протекает через открывшийся стабилитрон VD2, диод VD3 и резистор R6, поэтому начинает светить и светодиод HL1. При напряжении батареи около 15 В светодиод HL1 светит с нормальной яркостью и в паре со светодиодом HL2 они сигнализируют о перезарядке батареи. Включение красного (HL1) светодиода служит сигналом аварии. При напряжении 11,8…12,8 В, когда зарядка отсутствует, светодиоды выключены.

        Налаживание устройства сводится к установке нижнего (11,8 В) порога срабатывания компаратора подборкой резистора R2, остальные пороги устанавливаются автоматически.

 

Серебровский О.

г. Запорожье

          Инерционный датчик для «автосторожа»

 

        В основе инерционного датчика микроамперметр Р1, рис.2.

 

Рис.2

        Микроамперметр никак не переделывается. В схеме он использован с торцевой шкалой с нулем в центре шкалы. Максимальный ток отклонения стрелки в любую сторону от нуля равен 150 мкА, сопротивление рамки 320 Ом. Стрелка свободно качается при любом даже незначительном изменении положения его корпуса.

        ЭДС наводимая в катушке микроамперметра усиливается операционным усилителем А1, а ее колебания преобразуются в импульсы импульсным усилителем на VT1. Чувствительность можно установить резистором. Стабилитрон VD1 защищает ОУ от выбросов напряжения в электросети автомобиля.

        Микроамперметр Р1 можно заменить на отечественный типа М470, но его стрелку нужно отрегулировать как можно ближе к середине шкалы (сместить от крайней нулевой отметки, чтобы она свободно двигалась в ту и другую сторону).

 

Капелкин В.С.

Схема автосигнализации

ж. Радиоконструктор №2

2002 г., с.38   

          Автоматическое выключение ближнего света

 

        На рисунке 3 показано устройство, которое включает ближний свет после запуска двигателя.

 

Рис.3

        В схеме автомобиля есть датчик давления масла, который представляет собой подпружиненные контакты, нормально замкнутые, и размыкающиеся, когда под давлением масла пружина сжимается. Таким образом, когда двигатель не работает, контакты датчика замкнуты, а размыкаются они через одну – две секунды после запуска двигателя, то есть, когда давление масла возрастает.

        Транзисторный каскад подключается к индикаторной лампе недостаточного давления масла. Когда зажигание включено, но двигатель еще не работает давление масла мало и контакты замкнуты. Лампа горит, но транзистор закрыт и контакты реле К1 разомкнуты. После пуска двигателя датчик размыкается и на базу транзистора поступает ток через резистор и лампу. Он открывается и реле К1 включает фары.

        Конденсатор создает дополнительную задержку и исключает мигание фар при кратковременном падении давления масла. Диоды защищают транзистор от отрицательных выбросов напряжения.

        Вместо составного транзистора КТ972 можно использовать какой – то импортный аналог, или собрать схему Дарлингтона на двух транзисторах (КТ315 и КТ815). Реле стандартное автомобильное, в данном случае, импортное SCB – 1 – M1240.

 

Тимофеев П.С.

 

          Звуковой сигнализатор

 

        Индикатор, показанный на рис.4, может быть использован в различных устройствах, например, совместно с реле указателя поворотов автомобиля.

 

Рис.4

        Источником звука в индикаторе служит телефонный капсюль ТК-67-Н. Особенность индикатора в том, что он собран целиком в корпусе капсюля.

        Индикатор собран по схеме генератора с индуктивной обратной связью на катушках капсюля L1 и L2. Вместо МП25А можно использовать любой низкочастотный p-n-p транзистор. Устройство надежно работает и от 6, и от 12 В. Если генератор индикатора не заработал сразу после включения, следует поменять местами выводы одной из катушек. После налаживания капсюль следует залить до верхнего края каркасов катушек эпоксидной смолой, парафином или битумом.

 

Козлов Л.

п. Чернухино

Луганская обл.

          Сигнализатор «выключи фары» на микросхеме

 

        Сейчас ПДД требуют ездить с включенными фарами по загородному шоссе даже с светлое время суток. В некоторых странах так ездить требуется и в городе. И в этом есть одна неприятность, связанная с тем что днем свет фар особенно незаметен, он не привлекает к себе внимание водителя, который выходит из машины. А это приводит к тому, что очень легко забыть выключить фары и остаться с разряженным аккумулятором.

 

 

Рис.5

        Устройство, показанное на рисунке 5, предупреждает звуковым сигналом, выходящего из автомобиля водителя, о том что необходимо выключить фары. Схема питается от цепи ламп габаритных огней (от фар). А пищать или не пищать определяет по состоянию двух датчиков, - датчика давления масла (он контактный, на индикаторную лампочку) и датчика открытия двери (он в машине включает свет в салоне и используется еще и для сигнализации).

        В общем, чтобы сигнализатор пищал, нужно чтобы фары горели (на него поступает питание) и были замкнуты эти оба датчика. Тогда сигнализатор издает прерывистый звук высокого тона.

        Датчик недостаточного давления масла здесь используется для определения работы двигателя. Если двигатель исправен, то при работе давление масла в нем достаточно высоко  и контакты датчика давления разомкнуты. Если двигатель выключен, масленый насос не работает и давление масла мало, а контакты датчика замкнуты. Таким образом, когда мотор работает, на вывод 2 D1.1 поступает напряжение логической единицы и блокирует тональный мультивибратор D1.1 – D1.2.

        На второй блокирующий вход этого мультивибратора поступает уровень с инфразвукового мультивибратора D1.3 – D1.4, задача которого в прерывании звука. Когда дверь закрыта, контакты дверного датчика разомкнуты и на вывод 12 D1.4 поступает логическая единица. Это блокирует мультивибратор D1.3 – D1.4, а вместе с ним блокируется и тональный мультивибратор D1.1 – D1.2.

        А в результате получается следующее. Когда фары включены, на схему подается питание от цепи габаритных огней через резистор R5. Если мотор работает, то на вывод 2 D1.1  поступает единица и схема заблокирована. Схема будет заблокирована и когда закрыта дверь, так как на вывод 12 D1.4 будет поступать единица через R2.

        Как только выключаем двигатель, напряжение на выводе 2 D1.1 падает до нуля. Но на выводе 9 D1.2 еще есть единица, поэтому сигнализатор не звучит. Далее, если при включенных фарах и выключенном двигателе мы открываем дверь, то напряжение на выводе 12 D1.4 падает до нуля и оба мультивибратора начинают работать. Пъезоэлектрический звукоизлучатель F1 начинает прерывисто пищать, напоминая, что нужно выключить фары прежде чем выйти из машины.

        Стабилитроны VD1-VD3 нужны для защиты микросхемы от нестабильности напряжения в электросети автомобиля, от выбросов системы зажигания и прочих неприятностей.

        Пьезоизлучатель можно использовать, например, ЗП-1, ЗП-22 или от импортного телефонного аппарата или электронных часов.

        Чтобы получить наибольшую громкость, нужно подобрать сопротивление R3 так, чтобы пъезоизлучатель входил в резонанс, при этом громкость резко возрастает.

        Микросхему К561ЛЕ5 можно заменить на К176ЛЕ5 или импортным аналогом.

        Кроме настройки в резонанс, никакого налаживания не требуется. Если есть желание, можно изменить частоту пульсаций подбором параметров цепи R4-C2.

 

Захаров А.Н.                                        

          Контролер стоп – сигнала автомобиля

 

        Схема, которую полезно оснастить автомобиль, - «контролер» стоп – сигнала, рис.6.

 

Рис.6

        В отличие от известных, предлагаемый «контролер», не требует какого – либо вмешательства в проводку автомобиля, он просто подключается параллельно лампе стоп – сигнала.

        Схема представляет собой фотореле, чувствительный элемент которого – фоторезистор R1 – при освещении лампой стоп – сигнала резко уменьшает свое сопротивление, в результате чего транзисторы VT1, VT2 открываются и вынесенный на переднюю панель приборов автомобиля светодиод HL1 вспыхивает, сигнализируя, что на лампу стоп – сигнала не только подано напряжение, но и что она действительно светит.

        Налаживание контролера заключается лишь в выборе наилучшего положения фоторезистора R1 относительно лампы и в подборе резистора R2, обеспечивающего нужную чувствтельность.

 

Иванов А.

г. Ташкент

Узбекистан    

          Сигнализатор «Выключи фары»

 

        Сигнализатор выполнен из платы китайского кварцевого будильника,рис.7.

Рис.7

        Питается по цепи – лампы габаритного огня – датчик недостаточного давления масла. А дверной датчик служит для включения сигнализатора. Если имеют место сразу три условия, - горят фары, выключен двигатель и открывается дверь, то включается звуковая сигнализация.

        Плата с будильника рассчитана на питание от источника 1,5В, поэтому здесь она питается напряжением на светодиоде HL1 (он служит параметрическим стабилизатором).

          Индикатор напряжения для автомобильного аккумулятора

 

        При зарядке аккумуляторной батареи совсем не обязательно контролировать напряжение вольтметром, можно обойтись простым светодиодным индикатором (рис.8), позволяющим судить о предельных значениях напряжения.

Рис.8

        В индикаторе два одинаковых светодиода, включенных практически встречно – параллельно. Если напряжение батареи ниже минимально допустимого (11,4 В), горит светодиод HL1, а если оно превышает верхний предел допустимого (14,5 В) – HL2. В промежутке между этими значениями светодиоды погашены.

        Когда напряжение на щупах Х1 ,Х2 меньше 11,4 В, стабилитрон VD2 открыт и к цепочке R1HL1 приложено его напряжение стабилизации – примерно 3,5 В. Горит светодиод HL1.

        По мере повышения напряжения к заданному пороговому уровню (11,4 В) начинает открываться стабилитрон VD1, напряжение между анодом и катодом светодиода HL1 падает и вскоре становится недостаточным для поддержания свечения индикатора.

        При дальнейшем повышении напряжения и достижении им значения 14,5 В падение напряжения на резисторе R3 (от тока через стабилитрон VD2) превысит напряжение стабилизации стабилитрона VD1 настолько, что зажжется светодиод HL2.

Волков С.

г. Челябинск

          Чтобы не сгорела магнитола

 

        Одной из основных причин выхода из строя автомобильной магнитолы является неисправность реле – регулятора автомобиля, в результате которой, на некоторых режимах работы автомобиля, напряжение в борт - сети может подниматься значительно более 15 В, вплоть 17 – 18 В. При этом магнитолы, обычно рассчитаны на напряжение питания 11 – 15 В (номинал 13,2 В).

Рис.9

        На рисунке 9 показана схема простого и надежного устройства, которое отключает питание магнитолы если напряжение бортовой сети поднимется выше 14,5…15 В. Схема состоит из тиристора VS1, в анодной цепи которого включено реле Р1 с размыкающими контактами. На управляющий электрод тиристора ток поступает через цепочку стабилитронов VD1 – VD3 с суммарным напряжением стабилизации 14,1 В.

        Пока напряжение в бортовой сети не превышает 14,5…15 В стабилитроны закрыты и ток через них недостаточен для открывания тиристора. Обмотка реле Р1 при этом обесточена и через его контакты напряжение поступает на магнитолу.

        Как только напряжение бортовой сети достигает критической отметки, стабилитроны открываются и ток, протекающий через них, открывает тиристор VS1. Реле срабатывает и размыкает цепь питания магнитолы, предохраняя её от повреждения. В таком состоянии реле будет находится до тех пор пока не будет кратковременно нажата кнопка S1 выключающая тиристор.

        Тиристор КУ202 с любым буквенным индексом, реле автомобильное с размыкающими контактами. Стабилитроны можно взять другие, их может быть любое количество, важно чтобы они имели суммарное напряжение 14 – 14,5 В (например два стабилитрона КС170). Кнопка – любая размыкающая.

 

Алексеев В.В.

          Однокнопочный выключатель автосигнализации

 

        Во многих конструкциях автомобильных сигнализаций в качестве выключателя схемы сигнализации используется "потайной тумблер”, а для исключения срабатывания сигнализации от действий владельца машины используют геркон, вводящий в схему задержку при поднесении к нему магнитного брелока.

Рис.10

        На рисунке 10 показана схема простого выключателя сигнализации, который управляется одним герконом или кнопкой – S1. Если схема находится в включенном положении (реле Р1 обесточено и его нормально замкнутые контакты К1.1 подают питание на сигнализацию), для её выключения нужно замкнуть S1, при этом через R1 поступит напряжение на управляющий электрод тиристора VS1, он откроется и включит реле Р1, которое переведет свои контакты в противоположное, показанному на схеме, положение. При размыкании контактов S1 конденсатор C1 заряжается через R1.

        Для включения сигнализации нужно снова замкнуть S1, при этом, напряжение с конденсатора С1 поступит на тиристор в обратной полярности и его закроет. Реле Р1 обесточится и его контакты вернутся в показанное положение.

        В включенном состоянии схема ток не потребляет, и не разряжает аккумулятор. При выключенной сигнализации обмотка реле Р1 находится под напряжением и схема потребляет ток, равный номинальному току обмотки реле. Но это значение не имеет, поскольку при эксплуатации автомобиля идет подзарядка батареи от генератора. 

          Индикатор напряжения бортовой сети автомобиля

Рис.11

 

        На рисунке 11 показана схема индикатора напряжения автомобиля. Здесь используются три стабилитрона с разными напряжениями стабилизации: Д814А – 7,5В, Д814В – 9,5В и  Д814Д – 12В. В качестве индикаторов используются три ярких светодиода с падениями напряжения по 2,5В.        В результате, когда напряжение Uвх ниже 10В ни один из светодиодов не горит.

        При напряжении от 10В до 12В горит HL1. При напряжении от 12В до 14,5В будут гореть два светодиода HL1 и HL2. А при напряжении больше 14,5В горят все три светодиода. 

kopilkasovetov.ucoz.ru

Headlamp HL-001 , , , ,

, , Headlamp HL-001. , .

HL-001
6 500
IPX 4
100
2 ( , )
328    
HL-001
6
500
IPX 4
100
2 ( , )
328

Headlamp HL-001 LED 500 . 100 . 6 . : 220 V. Headlamp HL-001 . 90 . . Headlamp HL-001 IPX 4.

acctech.ru

Мощные светодиоды компании Hongli Optoelectronics

Андрей Никитин (Rainbow Technologies)

 

Среди сотен компаний, специализирующихся на производстве светодиодной продукции, далеко не последнее место занимают азиатские производители. Одним из них является корпорация Hongli Optoelectronics, основанная в 1998 году в городе Гуанджоу (Китай). Динамичное развитие позволило фирме быстро занять заметное место на азиатском рынке оптоэлектроники, и сегодня она предлагает широкий ассортимент высококачественной светодиодной продукции. Годовая производительность компании — более 60 миллионов светодиодов. Достижение высокого качества продукции обеспечивается применением современного оборудования, отлаженным технологическим процессом и высокой подготовкой персонала, что отражается полученными сертификатами ISO9001, ISO9002 и QS9000.

Номенклатура выпускаемой продукции широка: мощные светодиоды, выводные светодиоды и светодиоды для поверхностного монтажа, светодиоды типа «пиранья», светодиодные модули и изделия для декоративной подсветки, светодиодные балласты и контроллеры. В данной статье речь пойдет о мощных светодиодах компании Hongli Optoelectronic.

Определим основные характеристики светодиодов

Световые или фотометрические параметры характеризуются световым потоком и силой света. Световой поток — количество излучаемой энергии, протекающей через единицу площади за единицу времени. Единица измерения светового потока — люмен (лм). Величина светового потока характеризует излучающий источник, и ее нельзя увеличить никакими оптическими системами. Действие этих систем может лишь сводиться к перераспределению светового потока в пространстве, например, большей концентрации его по некоторым избранным направлениям. Сила света — это световой поток, приходящийся на единицу телесного угла, в пределах которого он распространяется. То есть сила света характеризует восприятие источника света наблюдателем. Таким образом, для тех светодиодов, которые выполняют в основном индикаторные функции, главной потребительской характеристикой является именно сила света. Для мощных светодиодов световой поток является более подходящей оценкой произведенного света при сравнении различных источников света.

Для оценочного пересчета силы света в световой поток используют следующий метод:

1. Зная плоский угол свечения светодиода q (двойной угол половинной яркости), указанный производителем, определяем телесный угол: Ω=2π (1 — cos(q/2)).

2. Вычисляем световой поток: F = Iv ґ Ω, где Iv — сила света светодиода.

Спектральные или колометрические параметры светодиодов характеризуют длиной волны, координатами цветности и цветовой температурой. Длина волны используется для характеристики цвета монохромного («не белого») светодиода. Различают пиковую и доминирующую длину волны. Доминирующая длина волны — это, по существу, цвет, фактически воспринимаемый человеческим глазом. Пиковая длина волны — это длина волны максимальной спектральной интенсивности. Пиковое значение легко определить, и поэтому оно является наиболее частым параметром, указываемым изготовителями светодиодов. Цветовые координаты характеризуют цвет по диаграмме цветности, принятой Международной комиссией по освещению (CIE) в 1931 году (см. рис. 1 в статье Евгения Звонарева о мощных светодиодах в этом номере журнала).

Цветовые координаты используются главным образом для характеристики оттенков излучения светодиодов белого цвета и при бинировании светодиодов. Оттенки излучения белых светодиодов также характеризуют цветовой температурой (измеряется в градусах Кельвина). Не углубляясь в теорию отметим, что определяют, как правило, теплый или мягкий белый (Warm White) с цветовой температурой от 2000 до 3500°К, натуральный белый (Natural White) с температурой от 3500 до 4500°К и холодный или чистый белый (Cool White) с цветовой температурой 4500°К и выше. Меньшая цветовая температура соответствует желтоватым оттенкам белого, характерного для ламп накаливания, а большая — голубоватым оттенкам люминесцентных ламп.

Угловые характеристики светодиодов характеризуются главным образом диаграммой пространственного распределения света или углом излучения q. Эти параметры характеризуют не столько источник света сам по себе, сколько параметры линзы, которая установлена на светодиоде. Для мощных светодиодов используются следующие типы линз:

  • Линза с распределением Ламберта (Lambertian). В общем случае дает равномерное распределение, примерно такое же, как и в обычных круглых светодиодах. Как правило, угол излучения у линз Lambertian составляет 100…140°.
  • Линза с распределением «Летучая мышь» (Batwing). Диаграмма направленности таких линз характеризуется боковыми пиками, величина которых в 1,5…3 раза превышает интенсивность излучения по центральной оси.
  • Линза с интенсивным боковым излучением (Side Emitting). Боковые пики находятся в области ±60…90 градусов, а интенсивность между ними не превышает 40% от максимума. Отметим, что если в Batwing интенсивность между пиками ровная, то в Side Emitting присутствуют явно выраженные небольшие всплески около центральной оси.
  • Узкофокусные линзы (Dome, Narrow или Focusing). Диаграмма направленности таких линз равномерная, однако угол излучения уже: 60…80°.

Типовые диаграммы пространственного распределения света представлены на рисунке 1.

 

 

Рис. 1. Диаграммы пространственного распределения света

Рассмотрим параметры, характеризующие эффективность применения мощных светодиодов в задачах освещения. Главным параметром является светоотдача, то есть, отношение светового потока к входной мощности (люмен/Ватт). К примеру, для ламп накаливания этот показатель равен 10…15 лм/Вт, для люминесцентных 70-100 лм/Вт. Для белых светодиодов этот параметр лежит в пределах от 30 до 70 лм/Вт, хотя у отдельных производителей это соотношение достигает значения 100 и более. Понятно, что цифра «100 и более» выглядит привлекательнее, чем 30 или 70, но здесь имеет смысл задуматься и о таком параметре, как «люмен на доллар», то есть, сколько будет стоить единица света. С этой точки зрения пиковые значения светоотдачи, достигнутые ведущими производителями, становятся менее привлекательными. Они отражают тенденцию развития мощных полупроводниковых источников света, которые во временной перспективе после массового освоения должны быть поддержаны лучшими ценовыми параметрами готовой продукции.

В товарной линейке Hongli Optoelectronic присутствуют светодиоды мощностью 0,5; 1; 3; 5; 10; 20 и 30 Вт. Их характеристики приведены в таблицах 1…5.

Таблица 1. Параметры светодиодов мощностью 0,5 Вт

Модель Цвет Длина волны, l, нм, Tc, °K Световой поток Отно-шение лм/Вт Прямое напряжение Угол, 2q (°) Fv, лм @ 150 мА Vf, В @ 150 мА min max min max
ERLQHEA1 красный 620 10,7 23,5 34,2 2,0 2,8 140
EYLBHEA1 желтый 590 10,7 23,5 34,2 2,0 2,8 140
EBC2HEA1 синий 470 3,8 8,2 12,0 3,0 3,6 140
EGNJHEA1 зеленый 525 23,5 34,9 58,4 3,0 3,6 140
EWC2HEA3 белый (хол.) 6000К 23,5 34,9 58,4 3,0 3,6 140

Таблица 2. Параметры светодиодов мощностью 1 Вт

Модель Цвет Длина волны, l, нм, Tc, °K Световой поток Отно-шение лм/Вт Прямое напряжение Угол, 2q (°) Fv, лм @ 350 мА Vf, В @ 350 мА min max min max
ERLR1EA1 красный 620 30,6 45,3 38,0 2,0 2,8 140
EYLA1EA1 желтый 590 23,5 34,9 29,2 2,0 2,8 140
EBN11EA1 синий 470 8,2 18,1 13,2 3,0 3,6 140
EGNh2EA1 зеленый 525 51,7 76,6 64,2 3,0 3,6 140
EWC11EA1 белый (тепл.) 3200К 34,9 59,8 47,4 3,0 3,6 140
EWJ41EA3 белый (хол.) 6000К 45,3 67,2 56,3 3,0 3,6 140

Таблица 3. Параметры светодиодов мощностью 3 Вт

Модель Цвет Длина волны, l, нм, Tc, °K Световой поток Отно-шение лм/Вт Прямое напряжение Угол, 2q (°) Fv, лм @ 800 мА Vf, В @ 800 мА min max min max
ERER3EE1 красный 620 51,7 76,6 21,4 2,0 2,8 140
EYLA3EE1 желтый 590 39,8 67,2 17,8 2,0 2,8 140
EBC83EA1 синий 470 18,1 30,6 8,1 3,2 4,0 140
EGNh4EE1 зеленый 525 99,7 113,6 35,6 3,0 3,8 140
EWJ73EA3 белый (хол.) 6000К 87,4 129,5 36,2 3,2 4,0 140

Таблица 4. Параметры светодиодов мощностью 5 Вт

Модель Цвет Длина волны, l, нм, Tc, °K Световой поток Отно-шение лм/Вт Прямое напряжение Угол, 2q (°) Fv, лм @ 1200 мА Vf, В @ 1200 мА min max min max
ERER3EE1 красный 620 65,0 80,0 14,5 2,0 2,8 140
EYEA5EG1 желтый 590 110,0 140,0 25,0 2,0 2,8 140
EBN15EG1 синий 470 23,5 34,9 5,8 3,2 4,0 140
EGNH5EG1 зеленый 525 168,2 249,6 41,8 3,0 3,8 140
EWJ85EA1 белый (хол.) 6000К 144,7 218,9 36,4 3,2 4,0 140

Таблица 5. Параметры светодиодов мощностью 10, 20 и 30 Вт

Модель Можность,Вт Цветовая температура, Tc, °K Световой поток, Fv, лм Отно-шение лм/Вт Прямоенапряжение, Vf, В Прямой ток,If, A Угол, 2q (°) min max
HL-PWD3Ah2 10 5000…7000 300 450 37,5 10,0 1,4 140
HL-PWD3CK1 20 5000…7000 700 850 38,8 15,0 1,4 140
HL-PWD3EL1 30 5000…7000 850 1110 32,7 24,0 1,4 140

Как мы видим, минимальные и максимальные значения интенсивности могут существенно отличаться, однако следует иметь в виду, что при заказе продукции можно указать конкретный бин.

Бинирование — это автоматическая сортировка светодиодов по таким параметрам как световой поток, длина волны (для цветных) или цветовая температура (для белых светодиодов), реже по величине прямого падения напряжения. Следует иметь в виду, что стоимость бинов различна — понятно, что цена бина с максимальным световым потоком будет велика, поскольку для выполнения такого заказа потребуется сортировка большей партии светодиодов.

Какие технические решения и технологии при производстве мощных светодиодов использует Hongli Optoelectronics для достижения высоких пользовательских характеристик?

Во-первых, используются многокристальные конструкции (то есть, в одном корпусе установлено несколько параллельно включенных светодиодов), что позволяют повысить ток и суммарную мощность устройства, а, следовательно, и световой поток, без снижения срока службы (при условии эффективного теплоотвода).

Во-вторых, использование конструкций светодиодов, обеспечивающих качественный теплоотвод. Известно, что необходимо максимально приблизить подложку, на которой закреплены кристаллы, к теплоотводящей поверхности. Технология СОВ (chip-on-board), которую использует компания Hongli Optoelectronics, является на данный момент одной из самых перспективных.

Рассмотрим основные преимущества применения мощных светодиодов для освещения.

  • Экономия электроэнергии. В общем случае, светодиодное освещение требует в 4-5 раз меньшей мощности для обеспечения одного и того же светового потока по сравнению с лампами накаливания и в 2 раза меньшей мощности по сравнению с люминесцентными лампами.
  • Длительный срок службы и, как следствие, снижение эксплуатационных затрат. Производители мощных светодиодов указывают срок службы, равный 50000…100000 часов. Это в 100 раз выше чем у ламп накаливания и примерно в 5…10 раз больше, чем у люминесцентных ламп. В настоящее время нет никакого стандарта, определяющего срок службы светодиодов, хотя существуют предложения от авторитетных организаций считать таковым время, в течении которого световой поток уменьшается до некоторого значения (до 70 или 50%) от начальной величины. Необходимо иметь в виду, что реальный срок службы существенно сокращается если, во-первых, протекающий через светодиод ток превышает номинальное значение и, во-вторых, не обеспечивается должный теплоотвод.
  • Низкое питающее напряжение, что гарантирует высокий уровень электробезопасности.
  • Светодиоды не имеют стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность.
  • Отсутствие разогрева или высоких пусковых напряжений при включении.
  • Безынерционность включения и выключения.
  • Возможность регулирования интенсивности излучения без изменения спектральных характеристик излучаемого света.
  • Отсутствие ультрафиолетового и иных вредных для здоровья излучений.
  • Не применяется никаких опасных веществ, например, ртути, что существенно упрощает процесс утилизации.

Несмотря на вышеперечисленные плюсы, есть объективные факторы, сдерживающие применение светодиодов в качестве средств освещения. Главная причина — высокая цена. Отношение люмен/доллар для обычной лампы накаливания — приблизительно 1000. А мощные светодиоды в настоящее время могут достигать лишь отношения 20…40 люменов на доллар.

Высокая цена является главным аргументом против использования светодиодов в качестве источников освещения в жилом секторе. Перспектива будущей экономии средств на обслуживание и электроэнергию не представляется в этом случае убедительной. В то же время промышленный и коммерческий секторы, где сегодня в основном применяется люминесцентное освещение, наоборот, заинтересованы в приобретении более экономичных и долговечных источников света высокой эффективности. Деятельность этих секторов в большей степени ориентирована на перспективу, поэтому снижение расходов на обслуживание, безопасность и низкие энергозатраты имеют первостепенное значение.

 

Получение технической информации, заказ образцов, поставка-e-mail: [email protected]  

«Твердотельные» источники света: решения от ON Semicinductor

Cветодиодные источники света применяются в таких ответственных приложениях, как светотехнические приборы для управления дорожным движением, освещения домов и улиц, световой рекламы. Здесь применение LED-освещения обеспечивает высокую степень адаптации к потребностям конечного пользователя и низкий уровень эксплуатационных расходов.

Компания ON Semiconductor предлагает на быстроразвивающемся рынке светодиодного освещения микросхемы и платформы (наборы взаимоувязанных микросхем и эталонные проектные решения) для приложений на основе питания от 220 В/AC, 12 В/AC, 12 В/24 В/DC, а также для систем на основе батарейного питания.

Для решений на основе сетевого питания компания ON Semiconductor предлагает широкий спектр микросхемы контроллеров питания со встроенными ключами, как с цепью «поджига», так и без схемы «поджига». Самое многочисленное семейство таких микросхем на основе технологии ШИМ с фиксированной частотой включает серию микросхем NCP1200-1216, а также микросхемы NCP101Х/1028 для мощностей до 8 Вт.

Для питания светодиодов на основе вторичных источников питания компания предлагает несколько групп микросхем для создания решений по подсветке ЖК-панелей (NCP5006/7; NCP5005; NCP5010; NCP5021; NCP5602/04/23/12/08), управления яркостью OLED-дисплеев (NCP1406; NCP5010; NCP5810), световых вспышек и стробоскопическиого освещения.

В линейке предложений компании ON Semiconductor — инструментарий для выбора LED-драйверов, эталонные платформы LED-драйвера на основе сетевого питания, LED-балласта. Разработчикам предлагается поддержка: http://www.onsemi.com/PowerSolutions/content.do?id=15102.

Метки: LED, Дискретные

www.compel.ru

Схема светодиодной лампы на 220 В, ремонт светодиодных ламп

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

Ремонт своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Изготовить своими руками

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Настольная лампа на светодиодах

Лампа на 220 В. Видео

Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

Оцените статью:

elquanta.ru

Применение светодиодов в электронных схемах

Светодиод – один из самых распространенных компонентов, встречающихся в современной технике. Светодиоды применяются для индикации состояния работы приборов, а также для подсветки или в качестве фонарей. По диапазону излучения выделяют светодиоды видимого диапазона (красные, желтые, зеленые, белые) и светодиоды инфракрасного или ультрафиолетового излучения (пульты дистанционного управления).

Светодиоды по своей структуре относятся к полупроводниковым приборам, таким диод или тиристор. Поэтому развитие светодиодов неразрывно связано с развитием полупроводников. Светодиод обладает односторонней проводимостью, благодаря одному p-n переходу. В начале 20 века советский ученый Олег Владимирович Лосев обратил внимание на свечение кристаллов полупроводников, возникающее при включении полупроводника в прямом направлении. В то время свечение было едва заметно, однако именно это свойство полупроводников и легло в основу развития светодиодной техники.

Рисунок 1

Современные светодиоды позволяют выбрать любую гамму излучения за счет применения легирующих примесей в p-n переход. Например, фосфор позволяет получить красный оттенок, алюминий – желтый, галлий – зеленый или голубой. Еще один способ изменения цвета свечения светодиода – введение люминофора, позволяющего давать видимый свет при воздействии на него другого излучения. Для светодиодов добавление люминофора в кристалл голубого свечения получается белый цвет. Применение фокусирующей линзы позволяет увеличить интенсивность излучения.

Развитие технологий позволило создать двухцветный светодиод. Двухцветные светодиоды могут выпускаться с тремя (рисунок 2) или двумя выводами. Для последних изменение свечения происходит при изменении направления тока.

Рисунок 2

Стоит отметить, что при подключении светодиодов в любую цепь последовательно с ним необходимо подключать балластное сопротивление. Большинство современных светодиодов выпускаются со встроенным токоограничивающим сопротивлением.

Как известно, работа светодиода зависит от величины тока, т. е. светодиод можно подключить даже к сети с напряжением в 220В, но с ограничителем тока в цепи. Прямое напряжение для большинства светодиодов превышает 2В, поэтому одной батарейки с напряжением в 1,5В не всегда будет достаточно для работы светодиода. Стандартный ряд напряжений начинается с 3В, а наиболее часто используются светодиоды на напряжение 12В. Еще одна важная характеристика светодиодов – величина обратного напряжения. Обычно обратное напряжение не превышает 100В, поэтому для защиты светодиодов применяют схемы встречно-параллельного выключения (рисунок 3).

Рисунок 3

Рассмотрим несколько устройств, в которых используются светодиоды. Большинство из них строятся на базе микроконтроллеров, дабы упростить схему и сократить количество элементов на плате.

Первое устройство представляет собой блок управления двухцветным светодиодом с тремя выводами (рисунок 4). Принцип работы схемы следующий: при одинаковых потенциалах на входах IN1 и IN2 на выводах OUT1 и OUT2 потенциалы также одинаковы и светодиоды погашены. При наличии сигнала высокого уровня на одном из входов загорается один из светодиодов HL1 или HL2. Регулировка яркости свечения светодиода осуществляется напряжением на входе Vref.

Рисунок 4

Расчет и выбор балластного сопротивления R2 основывается на законе Ома. Исходные данные для расчета: напряжение питания 12В, прямой ток светодиода 10мА, падение напряжения на светодиоде 2В. Тогда сопротивление R2 можно рассчитать по формуле:

[size=16]

R2 = (Uпит-U) / I = (12 - 2) / 0,010 = 1000(Ω) или 1КОм

Трехцветные светодиоды (RGB-светодиоды)

RGB-светодиоды, в первую очередь, предназначены для создания декоративной подсветки. RGB-светодиод имеет четыре вывода, а для управления его работой применяют специальные контроллеры. На базе RGB-светодиодов строятся светодиодные ленты. Трехцветные светодиоды позволяют создавать практически любой оттенок. Ниже приведена схема подключения трехцветного светодиода (Рисунок 5).

Рисунок 5

В основе RGB-светодиода лежат три излучателя. Сопротивления в схеме подобраны таким образом, чтобы свет светодиода был белым. Устройство, собранное по приведенной схеме (рисунок 6) применяется для подсветки в автомобиле.

Рисунок 6

Еще один вариант использования светодиодов в автомобиле – это схема подсветки номера (рисунок 7).

Рисунок 7

В схеме применяются шесть светодиодов с максимальным током 35 мА (ток ограничен на уровне 27мА стабилизатором тока DA1) и световым потоком в 4 лм.

Как отмечалось ранее, для питания светодиодов не достаточно одной батарейки с напряжением 1,5В. Однако существует схема преобразователя для питания белого светодиода от одной батарейки (рисунок 8). Принцип работы схемы: при низком уровне сигналов на выводах микроконтроллера РВ1 и РВ2, высоком уровне на выводах РВ0 и РВ4 происходит зарядка конденсаторов С1 и С2 до напряжения 1,4В. При изменении сигналов микроконтроллера к светодиоду прикладывается напряжение от двух заряженных конденсаторов и батарейки, что в сумме дает около 4,5В. Частота зажигания светодиода определяется частотой выходных сигналов микроконтроллера.

Рисунок 8

Аналогичную схему можно собрать на базе логических микросхем (рисунок 9).

Рисунок 9

Светодиоды достаточно надежные элементы, поэтому зачастую их используют в нескольких схемах, просто выпаивая элемент из уже ненужной платы. Однако при этом необходимо определить полярность светодиода для дальнейшего его использования. Прозвонка светодиодов мультиметром не всегда дает однозначный вывод о работоспособности диода, поэтому лучшим вариантом для проверки светодиодов является их проверка через подключение к источнику питания. Проверку любого светодиода следует выполнять через ограничивающий резистор номиналом от 200 до 500 Ом (рисунок 10) и выходным напряжением источника питания не менее 4,5В.

Рисунок 10

Еще один момент, на который необходимо обратить внимание при использовании светодиодов - это правильное подключение нескольких светодиодов в одну цепь (рисунок 11).

Рисунок 11

Стоит отметить, что двух одинаковых светодиодов не бывает. Поэтому имеется определенный разброс параметров светодиодов, особенно это сказывается на схемах параллельного включения светодиодов. При параллельном включении светодиодов необходимо подбирать балластное сопротивление под каждый светодиод в отдельности, так как небольшое отклонение в падении напряжения на элементе не позволит добиться одинаковой яркости свечения для всех светодиодов.

Практика применения светодиодов: Самодельный светильник из светодиодной ленты Светодиодные деревья - новый вид праздничной светотехники Делаем светодиодную подсветку салона автомобиля

Статьи по теме:

Как подключить светодиодную ленту Питание светодиодных лент Блоки питания для светодиодных лент

ukrelektrik.com


Смотрите также